Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (1127) Expression Attributions Wiki
XB-ANAT-3329

Papers associated with pectoral appendage (and acta4)

Limit to papers also referencing gene:
Show all pectoral appendage papers
Results 1 - 18 of 18 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles., Mori T., Sci Rep. January 1, 2020; 10 (1): 11737.                    


A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing., Fu L., Sci Rep. January 1, 2016; 6 35488.                                


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. January 1, 2015; 7 62.                                            


Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents., Gilchrist J., ACS Chem Biol. May 16, 2014; 9 (5): 1204-12.          


A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos., Morckel AR., Development. January 1, 2012; 139 (2): 437-42.        


Uberon, an integrative multi-species anatomy ontology., Mungall CJ., Genome Biol. January 1, 2012; 13 (1): R5.          


Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour., Tachibana T., J Neuroendocrinol. January 1, 2011; 23 (1): 74-81.


Bone morphogenetic protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis., Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.                        


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. January 1, 2009; 7 e006.            


Vertebrate Ctr1 coordinates morphogenesis and progenitor cell fate and regulates embryonic stem cell differentiation., Haremaki T., Proc Natl Acad Sci U S A. July 17, 2007; 104 (29): 12029-34.                    


ADMP2 is essential for primitive blood and heart development in Xenopus., Kumano G., Dev Biol. November 15, 2006; 299 (2): 411-23.                


Thyroid hormone controls multiple independent programs required for limb development in Xenopus laevis metamorphosis., Brown DD., Proc Natl Acad Sci U S A. August 30, 2005; 102 (35): 12455-8.        


Amphibian in vitro heart induction: a simple and reliable model for the study of vertebrate cardiac development., Ariizumi T., Int J Dev Biol. September 1, 2003; 47 (6): 405-10.      


Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals., Monsoro-Burq AH., Development. July 1, 2003; 130 (14): 3111-24.                


FGF signaling restricts the primary blood islands to ventral mesoderm., Kumano G., Dev Biol. December 15, 2000; 228 (2): 304-14.            


Proteins regulating actin assembly in oogenesis and early embryogenesis of Xenopus laevis: gelsolin is the major cytoplasmic actin-binding protein., Ankenbauer T., J Cell Biol. October 1, 1988; 107 (4): 1489-98.                  


Different regulatory elements are required for cell-type and stage specific expression of the Xenopus laevis skeletal muscle actin gene upon injection in X.laevis oocytes and embryos., Steinbeisser H., Nucleic Acids Res. April 25, 1988; 16 (8): 3223-38.


Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula., Gurdon JB., Cell. July 1, 1985; 41 (3): 913-22.                      

Page(s): 1