Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and smad2)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

ZSWIM4 regulates embryonic patterning and BMP signaling by promoting nuclear Smad1 degradation., Wang C., EMBO Rep. February 1, 2024; 25 (2): 646-671.                                          


Differential nuclear import sets the timing of protein access to the embryonic genome., Nguyen T., Nat Commun. October 6, 2022; 13 (1): 5887.                                  


Engagement of Foxh1 in chromatin regulation revealed by protein interactome analyses., Zhou JJ., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.      


Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm., Reich S., Genes (Basel). November 6, 2019; 10 (11):         


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE., Nat Commun. September 19, 2019; 10 (1): 4269.                                        


Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a., Khedgikar V., Elife. August 22, 2017; 6                                                             


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK., Dev Biol. June 15, 2017; 426 (2): 429-441.                    


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S., Development. December 1, 2014; 141 (24): 4794-805.                            


Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos., Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.                                


Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos., Chatfield J., Development. June 1, 2014; 141 (12): 2429-40.              


RAB8B is required for activity and caveolar endocytosis of LRP6., Demir K., Cell Rep. September 26, 2013; 4 (6): 1224-34.                    


Signaling crosstalk between TGFβ and Dishevelled/Par1b., Mamidi A., Cell Death Differ. October 1, 2012; 19 (10): 1689-97.                    


Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4., Warmflash A., Proc Natl Acad Sci U S A. July 10, 2012; 109 (28): E1947-56.          


Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins., Callery EM., Open Biol. April 1, 2012; 2 (4): 120060.                      


TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling., Watanabe Y., Mol Cell. January 15, 2010; 37 (1): 123-34.                                      


Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in Xenopus., Hagemann AI., Development. August 1, 2009; 136 (16): 2803-13.                


Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos., Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.                        


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM., Dev Biol. March 1, 2008; 315 (1): 203-16.                  


Coordination of cell polarity during Xenopus gastrulation., Shindo A., PLoS One. February 6, 2008; 3 (2): e1600.              


Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus., Saka Y., Development. December 1, 2007; 134 (23): 4209-18.


Interpretation of BMP signaling in early Xenopus development., Simeoni I., Dev Biol. August 1, 2007; 308 (1): 82-92.                  


Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands., Batut J., Dev Cell. February 1, 2007; 12 (2): 261-74.  


Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling., Knockaert M., Proc Natl Acad Sci U S A. August 8, 2006; 103 (32): 11940-5.


Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads., Schmierer B., Mol Cell Biol. November 1, 2005; 25 (22): 9845-58.


Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A., Abe T., Mech Dev. May 1, 2005; 122 (5): 671-80.            


Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase., Dupont S., Cell. April 8, 2005; 121 (1): 87-99.                                  


XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFbeta proteins in Xenopus development., Birsoy B., Development. February 1, 2005; 132 (3): 591-602.                      


Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo., Williams PH., Curr Biol. November 9, 2004; 14 (21): 1916-23.      


Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells., De Bosscher K., Biochem J. April 1, 2004; 379 (Pt 1): 209-16.


[The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation]., Xu XL., Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. September 1, 2003; 17 (5): 359-62.


Stoichiometry of active smad-transcription factor complexes on DNA., Inman GJ., J Biol Chem. December 27, 2002; 277 (52): 51008-16.


Nuclear exclusion of Smad2 is a mechanism leading to loss of competence., Grimm OH., Nat Cell Biol. July 1, 2002; 4 (7): 519-22.


A changing morphogen gradient is interpreted by continuous transduction flow., Bourillot PY., Development. May 1, 2002; 129 (9): 2167-80.


Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis., Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.                    


TGF-beta signalling pathways in early Xenopus development., Hill CS., Curr Opin Genet Dev. October 1, 2001; 11 (5): 533-40.    


Xenopus Smad3 is specifically expressed in the chordoneural hinge, notochord and in the endocardium of the developing heart., Howell M., Mech Dev. June 1, 2001; 104 (1-2): 147-50.    


Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase., Zhang Y, Zhang Y., Proc Natl Acad Sci U S A. January 30, 2001; 98 (3): 974-9.        


Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus., Pierreux CE., Mol Cell Biol. December 1, 2000; 20 (23): 9041-54.


Identification and characterization of constitutively active Smad2 mutants: evaluation of formation of Smad complex and subcellular distribution., Funaba M., Mol Endocrinol. October 1, 2000; 14 (10): 1583-91.


Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif., Germain S., Genes Dev. February 15, 2000; 14 (4): 435-51.                


Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes., Howell M., Dev Biol. October 15, 1999; 214 (2): 354-69.


A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation., Zhu H., Nature. August 12, 1999; 400 (6745): 687-93.


A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation., Shimizu K., Proc Natl Acad Sci U S A. June 8, 1999; 96 (12): 6791-6.


Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus., Hoodless PA., Dev Biol. March 15, 1999; 207 (2): 364-79.


Drosophila dSmad2 and Atr-I transmit activin/TGFbeta signals., Das P., Genes Cells. February 1, 1999; 4 (2): 123-34.  


FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals., Liu B., Mol Cell Biol. January 1, 1999; 19 (1): 424-30.


SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor., Tsukazaki T., Cell. December 11, 1998; 95 (6): 779-91.


Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors., Souchelnytskyi S., J Biol Chem. September 25, 1998; 273 (39): 25364-70.        


Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor., Hata A., Genes Dev. January 15, 1998; 12 (2): 186-97.          

???pagination.result.page??? 1 2 ???pagination.result.next???