Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and pcna)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Age-associated DNA methylation changes in Xenopus frogs., Morselli M., Epigenetics. December 1, 2023; 18 (1): 2201517.                    


β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus., Gao J., Int J Mol Sci. September 2, 2023; 24 (17):                 


The cohesin modifier ESCO2 is stable during DNA replication., Jevitt AM., Chromosome Res. January 28, 2023; 31 (1): 6.        


The cellular basis of cartilage growth and shape change in larval and metamorphosing Xenopus frogs., Rose CS., PLoS One. January 1, 2023; 18 (1): e0277110.                                  


The p97 segregase cofactor Ubxn7 facilitates replisome disassembly during S-phase., Tarcan Z., J Biol Chem. August 1, 2022; 298 (8): 102234.                          


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH., Front Neuroanat. January 1, 2021; 15 722374.                                                    


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


SLC20A1 Is Involved in Urinary Tract and Urorectal Development., Rieke JM., Front Cell Dev Biol. January 1, 2020; 8 567.                                


Importin-9 wraps around the H2A-H2B core to act as nuclear importer and histone chaperone., Padavannil A., Elife. March 11, 2019; 8                             


Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos., Willsey HR., Dev Biol. October 15, 2018; 442 (2): 276-287.                                      


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Development of Xenopus laevis bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions, proliferation rate, cell migration and deposition of extracellular matrix., Piprek RP., Dev Biol. December 15, 2017; 432 (2): 298-310.                        


RNAs coordinate nuclear envelope assembly and DNA replication through ELYS recruitment to chromatin., Aze A., Nat Commun. December 14, 2017; 8 (1): 2130.            


CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis., Naert T., Sci Rep. October 14, 2016; 6 35264.                          


Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways., Noiret M., Dev Biol. January 15, 2016; 409 (2): 489-501.                


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


RAD18 Is a Maternal Limiting Factor Silencing the UV-Dependent DNA Damage Checkpoint in Xenopus Embryos., Kermi C., Dev Cell. August 10, 2015; 34 (3): 364-72.        


TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis., Van Nieuwenhuysen T., Oncoscience. May 19, 2015; 2 (5): 555-66.              


Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway., Amado NG., J Biol Chem. December 19, 2014; 289 (51): 35456-67.                  


In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos., Hagemann AI., J Cell Sci. September 15, 2014; 127 (Pt 18): 3970-82.                  


Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1., Poh WT., Open Biol. January 8, 2014; 4 (1): 130138.                


Bioelectric signaling regulates size in zebrafish fins., Perathoner S., PLoS Genet. January 1, 2014; 10 (1): e1004080.            


M-cadherin-mediated intercellular interactions activate satellite cell division., Marti M., J Cell Sci. November 15, 2013; 126 (Pt 22): 5116-31.    


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


DNA polymerase κ-dependent DNA synthesis at stalled replication forks is important for CHK1 activation., Bétous R., EMBO J. July 31, 2013; 32 (15): 2172-85.                


The neurogenic factor NeuroD1 is expressed in post-mitotic cells during juvenile and adult Xenopus neurogenesis and not in progenitor or radial glial cells., D'Amico LA., PLoS One. June 11, 2013; 8 (6): e66487.          


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


G2 phase chromatin lacks determinants of replication timing., Lu J., J Cell Biol. June 14, 2010; 189 (6): 967-80.                


Replication initiation complex formation in the absence of nuclear function in Xenopus., Krasinska L., Nucleic Acids Res. April 1, 2009; 37 (7): 2238-48.            


ZFPIP/Zfp462 is maternally required for proper early Xenopus laevis development., Laurent A., Dev Biol. March 1, 2009; 327 (1): 169-76.      


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication., Shumaker DK., J Cell Biol. April 21, 2008; 181 (2): 269-80.              


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    


Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos., Iwao Y., Dev Growth Differ. June 1, 2005; 47 (5): 283-94.


ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos., Philipova R., Development. February 1, 2005; 132 (3): 579-89.


NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin., Eilbracht J., Mol Biol Cell. April 1, 2004; 15 (4): 1816-32.                            


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.          


Expression, activity, and subcellular localization of the Yin Yang 1 transcription factor in Xenopus oocytes and embryos., Ficzycz A., J Biol Chem. June 22, 2001; 276 (25): 22819-25.              


Disruption of nuclear lamin organization blocks the elongation phase of DNA replication., Moir RD., J Cell Biol. June 12, 2000; 149 (6): 1179-92.                    


Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication., Lemaitre JM., J Cell Biol. September 7, 1998; 142 (5): 1159-66.              


A functional analysis of p53 during early development of Xenopus laevis., Amariglio F., Oncogene. October 1, 1997; 15 (18): 2191-9.


Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis., Spann TP., J Cell Biol. March 24, 1997; 136 (6): 1201-12.                  


Role of HB-GAM (heparin-binding growth-associated molecule) in proliferation arrest in cells of the developing rat limb and its expression in the differentiating neuromuscular system., Szabat E., Dev Biol. August 25, 1996; 178 (1): 77-89.


The role of protein phosphorylation in the assembly of a replication competent nucleus: investigations in Xenopus egg extracts using the cyanobacterial toxin microcystin-LR., Murphy J., J Cell Sci. January 1, 1995; 108 ( Pt 1) 235-44.


Stabilization and expression of high levels of p53 during early development in Xenopus laevis., Tchang F., Dev Biol. September 1, 1993; 159 (1): 163-72.


Comparative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression., Vriz S., Mol Cell Biol. August 1, 1992; 12 (8): 3548-55.


The timing of the formation and usage of replicase clusters in S-phase nuclei of human diploid fibroblasts., Kill IR., J Cell Sci. December 1, 1991; 100 ( Pt 4) 869-76.


Characterization and developmental expression of Xenopus proliferating cell nuclear antigen (PCNA)., Leibovici M., Dev Biol. September 1, 1990; 141 (1): 183-92.          


Changes in the nuclear distribution of DNA polymerase alpha and PCNA/cyclin during the progress of the cell cycle, in a cell-free extract of Xenopus eggs., Hutchison C., J Cell Sci. August 1, 1989; 93 ( Pt 4) 605-13.


Quantitation and subcellular localization of proliferating cell nuclear antigen (PCNA/cyclin) in oocytes and eggs of Xenopus laevis., Zuber M., Exp Cell Res. June 1, 1989; 182 (2): 384-93.

???pagination.result.page??? 1 2 ???pagination.result.next???