Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1033) Expression Attributions Wiki
XB-ANAT-3344

Papers associated with hand (and myod1)

Limit to papers also referencing gene:
Show all hand papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants., Houston DW., Development. September 1, 2022; 149 (17):                                   


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D., PLoS Biol. September 1, 2021; 19 (9): e3001377.                        


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          


Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis-regulatory element., Ochi H., Dev Biol. May 15, 2017; 425 (2): 152-160.                


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus., Roberts NA., Hum Mol Genet. August 15, 2014; 23 (16): 4302-14.                              


Kcnh1 voltage-gated potassium channels are essential for early zebrafish development., Stengel R., J Biol Chem. October 12, 2012; 287 (42): 35565-35575.            


Snail2 controls mesodermal BMP/Wnt induction of neural crest., Shi J., Development. August 1, 2011; 138 (15): 3135-45.                  


Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis., Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.            


Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal., Rhinn M., Neural Dev. April 2, 2009; 4 12.              


The myocardin-related transcription factor, MASTR, cooperates with MyoD to activate skeletal muscle gene expression., Meadows SM., Proc Natl Acad Sci U S A. February 5, 2008; 105 (5): 1545-50.        


Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis., Martin BL., Dev Biol. April 15, 2007; 304 (2): 722-34.                


ADMP2 is essential for primitive blood and heart development in Xenopus., Kumano G., Dev Biol. November 15, 2006; 299 (2): 411-23.                


Limb regeneration in Xenopus laevis froglet., Suzuki M, Suzuki M., ScientificWorldJournal. May 12, 2006; 6 Suppl 1 26-37.        


Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis., Peres JN., Mech Dev. April 1, 2006; 123 (4): 321-33.                          


Role of X-Delta-2 in the early neural development of Xenopus laevis., Peres JN., Dev Dyn. March 1, 2006; 235 (3): 802-10.                                              


XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y., Mech Dev. January 1, 2006; 123 (1): 84-96.      


Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects., McNulty CL., Development. June 1, 2005; 132 (12): 2861-71.                    


Activin-like signaling activates Notch signaling during mesodermal induction., Abe T., Int J Dev Biol. June 1, 2004; 48 (4): 327-32.        


Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals., Monsoro-Burq AH., Development. July 1, 2003; 130 (14): 3111-24.                


A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor., Yokota C., Development. May 1, 2003; 130 (10): 2199-212.    


eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis., Fisher ME, Fisher ME., Development. March 1, 2002; 129 (6): 1307-15.    


XCL-2 is a novel m-type calpain and disrupts morphogenetic movements during embryogenesis in Xenopus laevis., Cao Y., Dev Growth Differ. October 1, 2001; 43 (5): 563-71.              


Functional characterization and genetic mapping of alk8., Payne TL., Mech Dev. February 1, 2001; 100 (2): 275-89.          


FGF signaling restricts the primary blood islands to ventral mesoderm., Kumano G., Dev Biol. December 15, 2000; 228 (2): 304-14.            


The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes., Yoon JK., Dev Biol. June 15, 2000; 222 (2): 376-91.            


Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes., Takeda M., Comp Biochem Physiol B Biochem Mol Biol. June 1, 2000; 126 (2): 157-68.


Cytochalasin B inhibits morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus., Tamai K., Dev Growth Differ. February 1, 1999; 41 (1): 41-9.            


The roles of maternal alpha-catenin and plakoglobin in the early Xenopus embryo., Kofron M., Development. April 1, 1997; 124 (8): 1553-60.        


Maternal beta-catenin establishes a 'dorsal signal' in early Xenopus embryos., Wylie C., Development. October 1, 1996; 122 (10): 2987-96.              


Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox., Schmidt JE., Development. June 1, 1996; 122 (6): 1711-21.                    


The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle., Asakura A., Dev Biol. October 1, 1995; 171 (2): 386-98.    


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC., Dev Biol. November 1, 1994; 166 (1): 18-33.                              

???pagination.result.page??? 1