Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (305) Expression Attributions Wiki
XB-ANAT-3348

Papers associated with pretectum

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Application of Recombinant Rabies Virus to Xenopus Tadpole Brain., Faulkner RL., eNeuro. June 7, 2021; 8 (4):         


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice., Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.            


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL., Neural Dev. August 8, 2016; 11 (1): 14.          


pdzrn3 is required for pronephros morphogenesis in Xenopus laevis., Marracci S., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.                  


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


Hspa9 is required for pronephros specification and formation in Xenopus laevis., Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.                      


Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms., Sipieter F., PLoS One. October 20, 2015; 10 (10): e0140924.          


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms., Mundell NA., J Comp Neurol. August 1, 2015; 523 (11): 1639-63.                      


Electronic polymers in lipid membranes., Johansson PK., Sci Rep. June 10, 2015; 5 11242.          


The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts., Frey S., PLoS One. April 22, 2015; 10 (4): e0125099.                    


The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81., Herrmann NJ., Nucleic Acids Res. April 20, 2015; 43 (7): 3653-66.              


Gene expression profiles in Rana pirica tadpoles following exposure to a predation threat., Mori T., BMC Genomics. April 2, 2015; 16 258.                


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S., Front Neuroanat. February 3, 2015; 9 107.                                                    


Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo., Li HY., Int J Dev Biol. January 1, 2015; 59 (10-12): 443-51.                          


Evolutionary innovation and conservation in the embryonic derivation of the vertebrate skull., Piekarski N., Nat Commun. December 1, 2014; 5 5661.                


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


A self-consistent approach for determining pairwise interactions that underlie channel activation., Chowdhury S., J Gen Physiol. November 1, 2014; 144 (5): 441-55.              


Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts., Cerqueira DM., Dev Biol. October 1, 2014; 394 (1): 54-64.                                          


Investigating specific bacterial resistance to AMPs by using a magainin I-resistant Escherichia coli model., de Almeida KC., J Antibiot (Tokyo). October 1, 2014; 67 (10): 681-7.


Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability., Liu X., Biochemistry. September 9, 2014; 53 (35): 5613-8.        


Drosha protein levels are translationally regulated during Xenopus oocyte maturation., Muggenhumer D., Mol Biol Cell. July 1, 2014; 25 (13): 2094-104.          


Essential roles of epithelial bone morphogenetic protein signaling during prostatic development., Omori A., Endocrinology. July 1, 2014; 155 (7): 2534-44.            


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


Expression and localization of Rdd proteins in Xenopus embryo., Lim JC., Anat Cell Biol. March 1, 2014; 47 (1): 18-27.          


Abelson phosphorylation of CLASP2 modulates its association with microtubules and actin., Engel U., Cytoskeleton (Hoboken). March 1, 2014; 71 (3): 195-209.                


Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome., Karpinski BA., Dis Model Mech. February 1, 2014; 7 (2): 245-57.                


On the origin and evolutionary history of NANOG., Scerbo P., PLoS One. January 17, 2014; 9 (1): e85104.    


Expression cloning of camelid nanobodies specific for Xenopus embryonic antigens., Itoh K., PLoS One. January 1, 2014; 9 (10): e107521.            


Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development., Barrionuevo MG., Int J Dev Biol. January 1, 2014; 58 (5): 369-77.            


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S., Front Neuroanat. December 24, 2013; 7 48.                    


Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases., Vilas GL., Hum Mol Genet. November 15, 2013; 22 (22): 4579-90.                    


Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20., Gutermuth T., Plant Cell. November 1, 2013; 25 (11): 4525-43.


N-terminal serine dephosphorylation is required for KCC3 cotransporter full activation by cell swelling., Melo Z., J Biol Chem. November 1, 2013; 288 (44): 31468-76.            


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy., Fréville A., BMC Biol. July 9, 2013; 11 80.                


SOMA: a single oligonucleotide mutagenesis and cloning approach., Pfirrmann T., PLoS One. June 4, 2013; 8 (6): e64870.        


Activation of ADF/cofilin by phosphorylation-regulated Slingshot phosphatase is required for the meiotic spindle assembly in Xenopus laevis oocytes., Iwase S., Mol Biol Cell. June 1, 2013; 24 (12): 1933-46.            


Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification., Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.                  


The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks., Lee J., Mol Biol Cell. May 1, 2013; 24 (9): 1343-53.          


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.                  


Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on GABAC Receptor-Mediated Ion Currents., Lee BH., Korean J Physiol Pharmacol. April 1, 2013; 17 (2): 127-32.          


Purinergic signalling - a possible mechanism for KCNQ1 channel response to cell volume challenges., Hammami S., Acta Physiol (Oxf). March 1, 2013; 207 (3): 503-15.


Comparison of the effects of antiarrhythmic drugs flecainide and verapamil on fKv1.4ΔN channel currents in Xenopus oocytes., Chen H., Acta Pharmacol Sin. February 1, 2013; 34 (2): 221-30.            

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???