Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (955) Expression Attributions Wiki
XB-ANAT-3351

Papers associated with thalamus (and ins)

Limit to papers also referencing gene:
Show all thalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification., Zhang T., PLoS One. May 15, 2013; 8 (5): e65058.                  


Plasma membrane events associated with the meiotic divisions in the amphibian oocyte: insights into the evolution of insulin transduction systems and cell signaling., Morrill GA., BMC Dev Biol. January 23, 2013; 13 3.              


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


Modulation of thyroid hormone-dependent gene expression in Xenopus laevis by INhibitor of Growth (ING) proteins., Helbing CC., PLoS One. January 1, 2011; 6 (12): e28658.            


Remodeling of insulin producing beta-cells during Xenopus laevis metamorphosis., Mukhi S., Dev Biol. April 15, 2009; 328 (2): 384-91.          


Expression analysis of IGFBP-rP10, IGFBP-like and Mig30 in early Xenopus development., Kuerner KM., Dev Dyn. October 1, 2006; 235 (10): 2861-7.                                          


Expression pattern of insulin receptor mRNA during Xenopus laevis embryogenesis., Groigno L., Mech Dev. August 1, 1999; 86 (1-2): 151-4.        


Metformin interaction with insulin-regulated glucose uptake, using the Xenopus laevis oocyte model expressing the mammalian transporter GLUT4., Detaille D., Eur J Pharmacol. July 14, 1999; 377 (1): 127-36.


Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+., Callamaras N., Cell Calcium. January 1, 1994; 15 (1): 66-78.


Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate., Murer H., Am J Physiol. May 1, 1991; 260 (5 Pt 1): C885-99.


Short- and long-term desensitization of serotonergic response in Xenopus oocytes injected with brain RNA: roles for inositol 1,4,5-trisphosphate and protein kinase C., Singer D., Pflugers Arch. April 1, 1990; 416 (1-2): 7-16.

???pagination.result.page??? 1