Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (955) Expression Attributions Wiki
XB-ANAT-3351

Papers associated with thalamus (and shh)

Limit to papers also referencing gene:
Show all thalamus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT., Genesis. February 1, 2021; 59 (1-2): e23405.          


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center., Sena E., J Dev Biol. October 20, 2016; 4 (4):       


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach., Domínguez L., Front Neuroanat. February 3, 2015; 9 3.                


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S., Front Neuroanat. February 3, 2015; 9 107.                                                    


Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3., Juraver-Geslin HA., Genesis. February 1, 2015; 53 (2): 203-24.          


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions., Domínguez L., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.                                      


Myb promotes centriole amplification and later steps of the multiciliogenesis program., Tan FE., Development. October 1, 2013; 140 (20): 4277-86.                


Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions., Domínguez L., J Comp Neurol. March 1, 2013; 521 (4): 725-59.                                                  


Thyroid hormone-induced sonic hedgehog signal up-regulates its own pathway in a paracrine manner in the Xenopus laevis intestine during metamorphosis., Hasebe T., Dev Dyn. February 1, 2012; 241 (2): 403-14.        


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis., Domínguez L., Front Neuroanat. March 2, 2011; 5 11.            


Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation., Juraver-Geslin HA., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.                    


Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine., Hasebe T., Stem Cells. January 1, 2011; 29 (1): 154-61.


Sonic hedgehog expression during Xenopus laevis forebrain development., Domínguez L., Dev Biol. August 6, 2010; 1347 19-32.            


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis., Hasebe T., Dev Dyn. October 1, 2008; 237 (10): 3006-15.    


Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis., Ishizuya-Oka A., Dev Dyn. December 1, 2007; 236 (12): 3358-68.            


Regeneration of the amphibian intestinal epithelium under the control of stem cell niche., Ishizuya-Oka A., Dev Growth Differ. February 1, 2007; 49 (2): 99-107.            


Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to-adult remodeling., Ishizuya-Oka A., Dev Dyn. December 1, 2006; 235 (12): 3240-9.      


Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination., Hurtado R., Dev Dyn. October 1, 2006; 235 (10): 2811-6.          


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration., Ishizuya-Oka A., Dev Growth Differ. December 1, 2005; 47 (9): 601-7.        


R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis., Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.                          


A direct requirement for Hedgehog signaling for normal specification of all ventral progenitor domains in the presumptive mammalian spinal cord., Wijgerde M., Genes Dev. November 15, 2002; 16 (22): 2849-64.


Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine., Ishizuya-Oka A., Differentiation. December 1, 2001; 69 (1): 27-37.                


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis., Stolow MA., Nucleic Acids Res. July 11, 1995; 23 (13): 2555-62.                  

???pagination.result.page??? 1