Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (29) Expression Attributions Wiki
XB-ANAT-3585

Papers associated with accessory olfactory bulb

Limit to papers also referencing gene:
Results 1 - 29 of 29 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.            


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. January 1, 2017; 11 24.                        


Dual processing of sulfated steroids in the olfactory system of an anuran amphibian., Sansone A., Front Cell Neurosci. January 1, 2015; 9 373.            


Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs., Nakada T., J Comp Neurol. October 15, 2014; 522 (15): 3501-19.


Phylogenic studies on the olfactory system in vertebrates., Taniguchi K., J Vet Med Sci. June 1, 2014; 76 (6): 781-8.                


Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream., Huilgol D., Nat Neurosci. February 1, 2013; 16 (2): 157-65.    


Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus., Hagino-Yamagishi K., J Comp Neurol. November 1, 2011; 519 (16): 3189-201.


Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis., Nakamuta S., Cell Tissue Res. October 1, 2011; 346 (1): 27-33.


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


Improved fluorescent (calcium indicator) dye uptake in brain slices by blocking multidrug resistance transporters., Manzini I., J Neurosci Methods. January 30, 2008; 167 (2): 140-7.


Phylogenic aspects of the amphibian dual olfactory system., Taniguchi K., J Vet Med Sci. January 1, 2008; 70 (1): 1-9.


Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization., Moreno N., J Comp Neurol. August 20, 2007; 503 (6): 815-31.


Lateral and medial amygdala of anuran amphibians and their relation to olfactory and vomeronasal information., Moreno N., Brain Res Bull. September 15, 2005; 66 (4-6): 332-6.


3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis., Gaudin A., J Comp Neurol. September 5, 2005; 489 (4): 403-24.


Localization and connectivity of the lateral amygdala in anuran amphibians., Moreno N., J Comp Neurol. November 8, 2004; 479 (2): 130-48.                  


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Hodological characterization of the medial amygdala in anuran amphibians., Moreno N., J Comp Neurol. November 17, 2003; 466 (3): 389-408.


Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system., Costagli A., J Comp Neurol. August 12, 2002; 450 (1): 73-93.    


Noradrenergic modulation of calcium currents and synaptic transmission in the olfactory bulb of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. March 1, 2001; 13 (6): 1093-100.


Structure of the olfactory bulb in tadpoles of Xenopus laevis., Nezlin LP., Cell Tissue Res. October 1, 2000; 302 (1): 21-9.


Expression patterns of glycoconjugates in the three distinctive olfactory pathways of the clawed frog, Xenopus laevis., Saito S., J Vet Med Sci. February 1, 2000; 62 (2): 153-9.


Basal ganglia organization in amphibians: chemoarchitecture., Marín O., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Neurogenesis in the olfactory bulb of the frog Xenopus laevis shows unique patterns during embryonic development and metamorphosis., Fritz A., Int J Dev Neurosci. November 1, 1996; 14 (7-8): 931-43.


Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions., Ohta K., Neuron. June 1, 1995; 14 (6): 1189-99.    


Differential expression of two cell surface proteins, neuropilin and plexin, in Xenopus olfactory axon subclasses., Satoda M., J Neurosci. January 1, 1995; 15 (1 Pt 2): 942-55.                  


Brain regions and encephalization in anurans: adaptation or stability?, Taylor GM., Brain Behav Evol. January 1, 1995; 45 (2): 96-109.


Distribution of proneuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis., Lázár G., J Comp Neurol. January 22, 1993; 327 (4): 551-71.


Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis., Lázár GY., J Comp Neurol. August 1, 1991; 310 (1): 45-67.                                                              

Page(s): 1