Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2703) Expression Attributions Wiki
XB-ANAT-3657

Papers associated with neural nucleus (and mapk1)

Limit to papers also referencing gene:
Show all neural nucleus papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms., Sipieter F., PLoS One. October 20, 2015; 10 (10): e0140924.          


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis., Gujral TS., Cell. November 6, 2014; 159 (4): 844-56.              


ERK and phosphoinositide 3-kinase temporally coordinate different modes of actin-based motility during embryonic wound healing., Li J., J Cell Sci. November 1, 2013; 126 (Pt 21): 5005-17.              


Atypical protein kinase C couples cell sorting with primitive endoderm maturation in the mouse blastocyst., Saiz N., Development. November 1, 2013; 140 (21): 4311-22.              


c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism., Hutchins EJ., J Neurosci. September 11, 2013; 33 (37): 14666-80.                


TAK1 promotes BMP4/Smad1 signaling via inhibition of erk MAPK: a new link in the FGF/BMP regulatory network., Liu C., Differentiation. April 1, 2012; 83 (4): 210-9.                  


Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor., Hara M., Nat Commun. January 1, 2012; 3 1059.              


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M., Endocrinology. June 1, 2011; 152 (6): 2321-9.


IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition., Walsh LA., Cell Commun Signal. May 2, 2011; 9 (1): 10.            


Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling., Lin HH., Stem Cells. November 1, 2010; 28 (11): 1950-60.              


TBP2 is a substitute for TBP in Xenopus oocyte transcription., Akhtar W., BMC Biol. August 3, 2009; 7 45.              


Four-dimensional dynamics of MAPK information processing systems., Kholodenko BN., Wiley Interdiscip Rev Syst Biol Med. January 1, 2009; 1 (1): 28-44.


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM., Dev Biol. March 1, 2008; 315 (1): 203-16.                  


Nuclear localization of the ERK MAP kinase mediated by Drosophila alphaPS2betaPS integrin and importin-7., James BP., Mol Biol Cell. October 1, 2007; 18 (10): 4190-9.


The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo., Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.                      


The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF., Regad T., Nat Cell Biol. May 1, 2007; 9 (5): 531-40.


O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes., Dehennaut V., J Biol Chem. April 27, 2007; 282 (17): 12527-36.


Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms., Je HS., J Cell Biol. December 18, 2006; 175 (6): 1029-42.                  


Arrestin-mediated ERK activation by gonadotropin-releasing hormone receptors: receptor-specific activation mechanisms and compartmentalization., Caunt CJ., J Biol Chem. February 3, 2006; 281 (5): 2701-10.


Interaction of the IP3-Ca2+ and MAPK signaling systems in the Xenopus blastomere: a possible frequency encoding mechanism for the control of the Xbra gene expression., Díaz J., Bull Math Biol. May 1, 2005; 67 (3): 433-65.


ERK1 activation is required for S-phase onset and cell cycle progression after fertilization in sea urchin embryos., Philipova R., Development. February 1, 2005; 132 (3): 579-89.


Ca(2+)(cyt) negatively regulates the initiation of oocyte maturation., Sun L., J Cell Biol. April 1, 2004; 165 (1): 63-75.              


Oocyte maturation in Xenopus laevis is blocked by the hormonal herbicide, 2,4-dichlorophenoxy acetic acid., Stebbins-Boaz B., Mol Reprod Dev. February 1, 2004; 67 (2): 233-42.


Characterization of ribosomal S6 protein kinase p90rsk during meiotic maturation and fertilization in pig oocytes: mitogen-activated protein kinase-associated activation and localization., Fan HY., Biol Reprod. March 1, 2003; 68 (3): 968-77.


Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx., Walsh S., Mol Cancer Res. February 1, 2003; 1 (4): 280-9.


Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors., McArdle CA., J Endocrinol. April 1, 2002; 173 (1): 1-11.


Differential internalization of mammalian and non-mammalian gonadotropin-releasing hormone receptors. Uncoupling of dynamin-dependent internalization from mitogen-activated protein kinase signaling., Hislop JN., J Biol Chem. October 26, 2001; 276 (43): 39685-94.


Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning., Curran KL., Dev Biol. December 1, 2000; 228 (1): 41-56.          


Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism., Adachi M., J Cell Biol. March 6, 2000; 148 (5): 849-56.          


TGF-beta signaling by Smad proteins., Miyazono K., Adv Immunol. January 1, 2000; 75 115-57.


Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer., Adachi M., EMBO J. October 1, 1999; 18 (19): 5347-58.


Human retinoblastoma protein (Rb) is phosphorylated by cdc2 kinase and MAP kinase in Xenopus maturing oocytes., Taieb F., FEBS Lett. April 3, 1998; 425 (3): 465-71.


Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal., Fukuda M., J Biol Chem. August 16, 1996; 271 (33): 20024-8.


AP-1/jun is required for early Xenopus development and mediates mesoderm induction by fibroblast growth factor but not by activin., Dong Z., J Biol Chem. April 26, 1996; 271 (17): 9942-6.


A novel MAP kinase phosphatase is localised in the branchial arch region and tail tip of Xenopus embryos and is inducible by retinoic acid., Mason C., Mech Dev. April 1, 1996; 55 (2): 133-44.              


Mutagenic analysis of functional domains of the mos proto-oncogene and identification of the sites important for MAPK activation and DNA binding., Fukasawa K., Oncogene. October 19, 1995; 11 (8): 1447-57.


XCL100, an inducible nuclear MAP kinase phosphatase from Xenopus laevis: its role in MAP kinase inactivation in differentiated cells and its expression during early development., Lewis T., J Cell Sci. August 1, 1995; 108 ( Pt 8) 2885-96.

???pagination.result.page??? 1