Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4079) Expression Attributions Wiki
XB-ANAT-3714

Papers associated with right (and gdf1)

Limit to papers also referencing gene:
Show all right papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A maternal dorsoventral prepattern revealed by an asymmetric distribution of ventralizing molecules before fertilization in Xenopus laevis., Castro Colabianchi AM., Front Cell Dev Biol. January 1, 2024; 12 1365705.                


Solubility phase transition of maternal RNAs during vertebrate oocyte-to-embryo transition., Hwang H., Dev Cell. December 4, 2023; 58 (23): 2776-2788.e5.                          


L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes., Neil CR., Mol Biol Cell. December 1, 2021; 32 (22): ar37.                        


Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish., Bisgrove BW., Elife. November 15, 2017; 6                 


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs., Charney RM., Semin Cell Dev Biol. June 1, 2017; 66 12-24.    


High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration., Owens DA., Development. January 15, 2017; 144 (2): 292-304.                                                                                        


Maternal messages to live by: a personal historical perspective., King ML., Genesis. January 1, 2017; 55 (1-2):   


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM., Nature. October 20, 2016; 538 (7625): 336-343.                              


Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development., Tadjuidje E., Open Biol. August 1, 2016; 6 (8):             


RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells., Roussis IM., PLoS One. January 1, 2016; 11 (1): e0147967.          


Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species., Claußen M., Mol Biol Cell. November 5, 2015; .            


Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm., Grant PA., Dev Dyn. March 1, 2014; 243 (3): 478-96.                                        


Dvr1 transfers left-right asymmetric signals from Kupffer's vesicle to lateral plate mesoderm in zebrafish., Peterson AG., Dev Biol. October 1, 2013; 382 (1): 198-208.    


MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate., Mathieu ME., Development. August 1, 2013; 140 (16): 3311-22.              


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M., Sci Rep. January 1, 2013; 3 2278.      


Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e., Cha SW., PLoS One. January 1, 2012; 7 (7): e41782.            


APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis., Vonica A., Dev Biol. February 1, 2011; 350 (1): 13-23.                


Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex RNA., Cuykendall TN., Dev Dyn. June 1, 2010; 239 (6): 1838-48.                              


Interactions of 40LoVe within the ribonucleoprotein complex that forms on the localization element of Xenopus Vg1 mRNA., Kroll TT., Mech Dev. July 1, 2009; 126 (7): 523-38.                  


Highways for mRNA transport., Singer RH., Cell. September 5, 2008; 134 (5): 722-3.  


Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus., Mir A., Dev Biol. March 1, 2008; 315 (1): 161-72.            


Long-range action of Nodal requires interaction with GDF1., Tanaka C., Genes Dev. December 15, 2007; 21 (24): 3272-82.        


Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development., Andersson O., Dev Biol. November 15, 2007; 311 (2): 500-11.


The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways., Yan B., Dev Biol. May 1, 2007; 305 (1): 103-19.        


Tsukushi cooperates with VG1 to induce primitive streak and Hensen's node formation in the chick embryo., Ohta K., Development. October 1, 2006; 133 (19): 3777-86.    


The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification., Spagnoli FM., Dev Biol. April 15, 2006; 292 (2): 442-56.                      


XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning., Onuma Y., Development. January 1, 2006; 133 (2): 237-50.                                      


Identification of asymmetrically localized transcripts along the animal-vegetal axis of the Xenopus egg., Kataoka K., Dev Growth Differ. October 1, 2005; 47 (8): 511-21.        


XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFbeta proteins in Xenopus development., Birsoy B., Development. February 1, 2005; 132 (3): 591-602.                      


Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum., Chang P., Mol Biol Cell. October 1, 2004; 15 (10): 4669-81.                


ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus., Chen Y., Dev Biol. April 15, 2004; 268 (2): 280-94.      


Xvelo1 uses a novel 75-nucleotide signal sequence that drives vegetal localization along the late pathway in Xenopus oocytes., Claussen M., Dev Biol. February 15, 2004; 266 (2): 270-84.      


Kinesin II mediates Vg1 mRNA transport in Xenopus oocytes., Betley JN., Curr Biol. February 3, 2004; 14 (3): 219-24.            


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor., Bell E., Development. April 1, 2003; 130 (7): 1381-9.    


Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms., Chang C., Dev Biol. March 1, 2003; 255 (1): 1-11.                    


EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1., Cheng SK., Genes Dev. January 1, 2003; 17 (1): 31-6.


A ubiquitous and conserved signal for RNA localization in chordates., Betley JN., Curr Biol. October 15, 2002; 12 (20): 1756-61.      


A consensus RNA signal that directs germ layer determinants to the vegetal cortex of Xenopus oocytes., Bubunenko M., Dev Biol. August 1, 2002; 248 (1): 82-92.            


UUCAC- and vera-dependent localization of VegT RNA in Xenopus oocytes., Kwon S., Curr Biol. April 2, 2002; 12 (7): 558-64.      


Ectodermal syndecan-2 mediates left-right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor., Kramer KL., Dev Cell. January 1, 2002; 2 (1): 115-24.  


Vegetal localization of maternal mRNAs is disrupted by VegT depletion., Heasman J., Dev Biol. December 15, 2001; 240 (2): 377-86.    


TGF-beta signalling pathways in early Xenopus development., Hill CS., Curr Opin Genet Dev. October 1, 2001; 11 (5): 533-40.    


Timing of endogenous activin-like signals and regional specification of the Xenopus embryo., Lee MA., Development. August 1, 2001; 128 (15): 2939-52.            


Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node., Zhang XM., Cell. July 27, 2001; 106 (2): 781-92.


Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node., Zhang XM., Cell. June 15, 2001; 105 (6): 781-92.


Overexpression of the Xenopus tight-junction protein claudin causes randomization of the left-right body axis., Brizuela BJ., Dev Biol. February 15, 2001; 230 (2): 217-29.                


Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene., Wall NA., Dev Biol. November 15, 2000; 227 (2): 495-509.              


Zic3 is involved in the left-right specification of the Xenopus embryo., Kitaguchi T., Development. November 1, 2000; 127 (22): 4787-95.              

???pagination.result.page??? 1 2 ???pagination.result.next???