Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4078) Expression Attributions Wiki
XB-ANAT-3714

Papers associated with right (and pax8)

Limit to papers also referencing gene:
Show all right papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes., Grand K., J Am Soc Nephrol. March 1, 2023; 34 (3): 412-432.                          


Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion., Edri T., Front Cell Dev Biol. January 1, 2023; 11 1282273.                    


Hnf1b renal expression directed by a distal enhancer responsive to Pax8., Goea L., Sci Rep. November 19, 2022; 12 (1): 19921.            


Adrenergic receptor signaling induced by Klf15, a regulator of regeneration enhancer, promotes kidney reconstruction., Suzuki N., Proc Natl Acad Sci U S A. August 16, 2022; 119 (33): e2204338119.                        


Normal Table of Xenopus development: a new graphical resource., Zahn N., Development. July 15, 2022; 149 (14):                         


Identification of ZBTB26 as a Novel Risk Factor for Congenital Hypothyroidism., Vick P., Genes (Basel). November 24, 2021; 12 (12):                     


A Critical E-box in Barhl1 3' Enhancer Is Essential for Auditory Hair Cell Differentiation., Hou K., Cells. May 15, 2019; 8 (5):               


Characterization of potential TRPP2 regulating proteins in early Xenopus embryos., Futel M., J Cell Biochem. December 1, 2018; 119 (12): 10338-10350.  


Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus., Bae CJ., Biochem Biophys Res Commun. January 15, 2018; 495 (3): 2257-2263.        


Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney., Cosse-Etchepare C., Int J Dev Biol. January 1, 2018; 62 (4-5): 325-333.                                                                      


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


pdzrn3 is required for pronephros morphogenesis in Xenopus laevis., Marracci S., Int J Dev Biol. January 1, 2016; 60 (1-3): 57-63.                  


CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus., Bhattacharya D., Dev Biol. December 15, 2015; 408 (2): 196-204.            


Transcriptional regulator PRDM12 is essential for human pain perception., Chen YC, Chen YC., Nat Genet. July 1, 2015; 47 (7): 803-8.          


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Differential expression of arid5b isoforms in Xenopus laevis pronephros., Le Bouffant R., Int J Dev Biol. January 1, 2014; 58 (5): 363-8.                


Exon capture and bulk segregant analysis: rapid discovery of causative mutations using high-throughput sequencing., del Viso F., BMC Genomics. November 21, 2012; 13 649.                  


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B., Dev Biol. July 1, 2012; 367 (1): 55-65.                


Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8 paralogues., Ochi H., Nat Commun. May 22, 2012; 3 848.      


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus., Jung B., BMC Dev Biol. June 10, 2011; 11 36.                          


Non-canonical wnt signals antagonize and canonical wnt signals promote cell proliferation in early kidney development., McCoy KE., Dev Dyn. June 1, 2011; 240 (6): 1558-66.          


The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis., Abu-Daya A., Dev Biol. January 15, 2011; 349 (2): 204-12.                                


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


Requirement of Wnt/beta-catenin signaling in pronephric kidney development., Lyons JP., Mech Dev. January 1, 2009; 126 (3-4): 142-59.        


Hindbrain-derived Wnt and Fgf signals cooperate to specify the otic placode in Xenopus., Park BY., Dev Biol. December 1, 2008; 324 (1): 108-21.      


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


An increase in intracellular Ca2+ is involved in pronephric tubule differentiation in the amphibian Xenopus laevis., Leclerc C., Dev Biol. September 15, 2008; 321 (2): 357-67.        


Fli1 acts at the top of the transcriptional network driving blood and endothelial development., Liu F., Curr Biol. August 26, 2008; 18 (16): 1234-40.                              


Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus., Colas A., Dev Biol. August 15, 2008; 320 (2): 351-65.                  


A functional screen for genes involved in Xenopus pronephros development., Kyuno J., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


An ontology for Xenopus anatomy and development., Segerdell E., BMC Dev Biol. June 23, 2008; 8 92.    


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V., Development. August 1, 2006; 133 (15): 2961-71.                  


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


A novel role for lbx1 in Xenopus hypaxial myogenesis., Martin BL., Development. January 1, 2006; 133 (2): 195-208.                                


SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation., Taylor KM., Dev Cell. November 1, 2005; 9 (5): 593-603.                  


Evi-1 expression in Xenopus., Mead PE., Gene Expr Patterns. June 1, 2005; 5 (5): 601-8.              


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Specification of the otic placode depends on Sox9 function in Xenopus., Saint-Germain N., Development. April 1, 2004; 131 (8): 1755-63.              


Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro., Itäranta P., Genesis. April 1, 2002; 32 (4): 259-68.  


A role for Xlim-1 in pronephros development in Xenopus laevis., Chan TC., Dev Biol. December 15, 2000; 228 (2): 256-69.      


Synergism between Pax-8 and lim-1 in embryonic kidney development., Carroll TJ., Dev Biol. October 1, 1999; 214 (1): 46-59.        


Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.                      

???pagination.result.page??? 1