Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1011) Expression Attributions Wiki
XB-ANAT-3717

Papers associated with mitotic spindle (and actl6a)

Limit to papers also referencing gene:
Show all mitotic spindle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

How to be at the right place at the right time: the importance of spindle positioning in embryos., Moorhouse KS., Mol Reprod Dev. October 1, 2014; 81 (10): 884-95.


Intracellular transport based on actin polymerization., Khaitlina SY., Biochemistry (Mosc). September 1, 2014; 79 (9): 917-27.


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis., Samwer M., EMBO J. July 3, 2013; 32 (13): 1886-902.              


Activation of ADF/cofilin by phosphorylation-regulated Slingshot phosphatase is required for the meiotic spindle assembly in Xenopus laevis oocytes., Iwase S., Mol Biol Cell. June 1, 2013; 24 (12): 1933-46.            


Transgenic Xenopus laevis for live imaging in cell and developmental biology., Takagi C., Dev Growth Differ. May 1, 2013; 55 (4): 422-33.            


Dynamics of the subcellular localization of RalBP1/RLIP through the cell cycle: the role of targeting signals and of protein-protein interactions., Fillatre J., FASEB J. May 1, 2012; 26 (5): 2164-74.


Spindle position in symmetric cell divisions during epiboly is controlled by opposing and dynamic apicobasal forces., Woolner S., Dev Cell. April 17, 2012; 22 (4): 775-87.                          


Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo., Ninomiya H., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.              


Functional analysis of the microtubule-interacting transcriptome., Sharp JA., Mol Biol Cell. November 1, 2011; 22 (22): 4312-23.              


And the dead shall rise: actin and myosin return to the spindle., Sandquist JC., Dev Cell. September 13, 2011; 21 (3): 410-9.


The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization., Leblanc J., Mol Hum Reprod. May 1, 2011; 17 (5): 305-16.


Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited., Potapova TA., Mol Biol Cell. April 15, 2011; 22 (8): 1191-206.              


Xenopus., Wallingford JB., Curr Biol. March 23, 2010; 20 (6): R263-4.  


Xenopus meiotic microtubule-associated interactome., Gache V., PLoS One. February 2, 2010; 5 (2): e9248.          


Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells., Bazile F., Carcinogenesis. April 1, 2009; 30 (4): 555-65.


Identification of structural and functional O-linked N-acetylglucosamine-bearing proteins in Xenopus laevis oocyte., Dehennaut V., Mol Cell Proteomics. November 1, 2008; 7 (11): 2229-45.


Mitosis: new roles for myosin-X and actin at the spindle., Wühr M., Curr Biol. October 14, 2008; 18 (19): R912-4.


Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9)., Venoux M., BMC Genomics. September 9, 2008; 9 406.                      


Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion., Zhang X., Dev Cell. September 1, 2008; 15 (3): 386-400.


Myosin-10 and actin filaments are essential for mitotic spindle function., Woolner S., J Cell Biol. July 14, 2008; 182 (1): 77-88.                


Cell-free extract systems and the cytoskeleton: preparation of biochemical experiments for transmission electron microscopy., Coughlin M., Methods Mol Biol. January 1, 2007; 369 199-212.


TPX2 is required for postmitotic nuclear assembly in cell-free Xenopus laevis egg extracts., O'Brien LL., J Cell Biol. June 5, 2006; 173 (5): 685-94.            


Regulation of dynamic events by microfilaments during oocyte maturation and fertilization., Sun QY., Reproduction. February 1, 2006; 131 (2): 193-205.


Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis., Nishimura Y., J Cell Sci. January 1, 2006; 119 (Pt 1): 104-14.


The Ste20-like kinase SLK is required for cell cycle progression through G2., O'Reilly PG., J Biol Chem. December 23, 2005; 280 (51): 42383-90.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


A microtubule-binding myosin required for nuclear anchoring and spindle assembly., Weber KL., Nature. September 16, 2004; 431 (7006): 325-9.


Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro., Krauss SW., J Biol Chem. June 25, 2004; 279 (26): 27591-8.


The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules., Hestermann A., BMC Cell Biol. June 8, 2004; 5 24.              


Expression of the mitotic kinesin Kif15 in postmitotic neurons: implications for neuronal migration and development., Buster DW., J Neurocytol. January 1, 2003; 32 (1): 79-96.


The DIX domain targets dishevelled to actin stress fibres and vesicular membranes., Capelluto DG., Nature. October 17, 2002; 419 (6908): 726-9.


Centrosome separation: respective role of microtubules and actin filaments., Uzbekov R., Biol Cell. September 1, 2002; 94 (4-5): 275-88.


Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis., Berdnik D., Curr Biol. April 16, 2002; 12 (8): 640-7.


Dorsoventral differences in cell-cell interactions modulate the motile behaviour of cells from the Xenopus gastrula., Reintsch WE., Dev Biol. December 15, 2001; 240 (2): 387-403.                      


Functional involvement of Xenopus LIM kinases in progression of oocyte maturation., Takahashi T., Dev Biol. January 15, 2001; 229 (2): 554-67.


A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos., Drechsel DN., Curr Biol. January 1, 1997; 7 (1): 12-23.


Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities., Kelley CA., J Cell Biol. August 1, 1996; 134 (3): 675-87.


The relationship of HsEg5 and the actin cytoskeleton to centrosome separation., Whitehead CM., Cell Motil Cytoskeleton. January 1, 1996; 35 (4): 298-308.


F-actin is required for spindle anchoring and rotation in Xenopus oocytes: a re-examination of the effects of cytochalasin B on oocyte maturation., Gard DL., Zygote. February 1, 1995; 3 (1): 17-26.


The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae., Mazzoni C., J Cell Biol. December 1, 1993; 123 (6 Pt 2): 1821-33.


Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts., Vale RD., Cell. February 22, 1991; 64 (4): 827-39.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  

???pagination.result.page??? 1