Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1011) Expression Attributions Wiki
XB-ANAT-3717

Papers associated with mitotic spindle (and cdc20)

Limit to papers also referencing gene:
Show all mitotic spindle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Nocodazole-Induced Expression and Phosphorylation of Anillin and Other Mitotic Proteins Are Decreased in DNA-Dependent Protein Kinase Catalytic Subunit-Deficient Cells and Rescued by Inhibition of the Anaphase-Promoting Complex/Cyclosome with proTAME but Not Apcin., Douglas P., Mol Cell Biol. June 15, 2020; 40 (13):                   


APC/C: current understanding and future perspectives., Yamano H., F1000Res. January 1, 2019; 8         


A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling., Ji Z., Elife. January 10, 2017; 6               


Phosphorylation of Xenopus p31(comet) potentiates mitotic checkpoint exit., Mo M., Cell Cycle. January 1, 2015; 14 (24): 3978-85.          


Roles of different pools of the mitotic checkpoint complex and the mechanisms of their disassembly., Eytan E., Proc Natl Acad Sci U S A. June 25, 2013; 110 (26): 10568-73.


Shugoshin is a Mad1/Cdc20-like interactor of Mad2., Orth M., EMBO J. June 10, 2011; 30 (14): 2868-80.


Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited., Potapova TA., Mol Biol Cell. April 15, 2011; 22 (8): 1191-206.              


Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage., Zeng X., Cancer Cell. October 19, 2010; 18 (4): 382-95.


Mouse Emi2 as a distinctive regulatory hub in second meiotic metaphase., Suzuki T., Development. October 1, 2010; 137 (19): 3281-91.            


Learning about cancer from frogs: analysis of mitotic spindles in Xenopus egg extracts., Cross MK., Dis Model Mech. January 1, 2009; 2 (11-12): 541-7.      


Protein metamorphosis: the two-state behavior of Mad2., Luo X., Structure. November 12, 2008; 16 (11): 1616-25.


The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly., Orjalo AV., Mol Biol Cell. September 1, 2006; 17 (9): 3806-18.


Rewiring the exit from mitosis., Ciliberto A., Cell Cycle. August 1, 2005; 4 (8): 1107-12.


Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores., Ahonen LJ., Curr Biol. June 21, 2005; 15 (12): 1078-89.


Inhibition of the anaphase-promoting complex by the Xnf7 ubiquitin ligase., Casaletto JB., J Cell Biol. April 11, 2005; 169 (1): 61-71.              


Purification and assay of Mad2: a two-state inhibitor of anaphase-promoting complex/cyclosome., Luo X., Methods Enzymol. January 1, 2005; 398 246-55.


The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes., Tsurumi C., J Cell Biol. December 20, 2004; 167 (6): 1037-50.                


Kinetochore localization of spindle checkpoint proteins: who controls whom?, Vigneron S., Mol Biol Cell. October 1, 2004; 15 (10): 4584-96.


Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint., Xia G., EMBO J. August 4, 2004; 23 (15): 3133-43.


Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest., Tunquist BJ., J Cell Biol. December 22, 2003; 163 (6): 1231-42.            


AuroraA overexpression overrides the mitotic spindle checkpoint triggered by nocodazole, a microtubule destabilizer., Jiang Y., Oncogene. November 13, 2003; 22 (51): 8293-301.


The spindle checkpoint requires cyclin-dependent kinase activity., D'Angiolella V., Genes Dev. October 15, 2003; 17 (20): 2520-5.


Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint., Chung E., Nat Cell Biol. August 1, 2003; 5 (8): 748-53.


Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1., Mao Y., Cell. July 11, 2003; 114 (1): 87-98.


Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit., Littlepage LE., Genes Dev. September 1, 2002; 16 (17): 2274-85.


BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1., Chen RH., J Cell Biol. August 5, 2002; 158 (3): 487-96.              


Degradation of human Aurora-A protein kinase is mediated by hCdh1., Taguchi Si., FEBS Lett. May 22, 2002; 519 (1-3): 59-65.


The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signaling., Millband DN., Trends Cell Biol. May 1, 2002; 12 (5): 205-9.


Spindle checkpoint requires Mad1-bound and Mad1-free Mad2., Chung E., Mol Biol Cell. May 1, 2002; 13 (5): 1501-11.


Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins., Reimann JD., Genes Dev. December 15, 2001; 15 (24): 3278-85.


Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint., Sironi L., EMBO J. November 15, 2001; 20 (22): 6371-82.


Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1., Tang Z., Dev Cell. August 1, 2001; 1 (2): 227-37.


Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1., Pfleger CM., Genes Dev. July 15, 2001; 15 (14): 1759-64.


Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts., Lorca T., EMBO J. July 1, 1998; 17 (13): 3565-75.                  


The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation., Fang G., Genes Dev. June 15, 1998; 12 (12): 1871-83.

???pagination.result.page??? 1