Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (38) Expression Attributions Wiki
XB-ANAT-382

Papers associated with sclerotome

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Antagonistic regulation of homeologous uncx.L and uncx.S genes orchestrates myotome and sclerotome differentiation in the evolutionarily divergent vertebral column of Xenopus laevis., Sánchez RS., J Exp Zool B Mol Dev Evol. December 28, 2023;


[The lateral somitic frontier: The source of multipotent somitic cells in Xenopus]., Della Gaspera B., Med Sci (Paris). December 1, 2023; 39 (12): 967-974.


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier., Della Gaspera B., Dev Biol. September 1, 2019; 453 (1): 11-18.        


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.                              


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 18, 2018; 13 (1): e0191751.                                                          


Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis., Sabillo A., Semin Cell Dev Biol. March 1, 2016; 51 80-91.


Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis., Abou-Elhamd A., Dev Biol. June 1, 2015; 402 (1): 61-71.              


myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis., Goljanek-Whysall K., Development. September 1, 2014; 141 (17): 3378-87.            


Active repression by RARγ signaling is required for vertebrate axial elongation., Janesick A., Development. June 1, 2014; 141 (11): 2260-70.                    


Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis., Sánchez RS., Dev Dyn. May 1, 2013; 242 (5): 572-9.                                    


Normal levels of p27 are necessary for somite segmentation and determining pronephric organ size., Naylor RW., Organogenesis. October 1, 2009; 5 (4): 201-10.                                          


Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution., Gray RS., Dev Dyn. August 1, 2009; 238 (8): 2044-57.            


Developmental expression of retinoic acid receptors (RARs)., Dollé P., Nucl Recept Signal. May 12, 2009; 7 e006.            


Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo., Pouget C., Dev Biol. March 15, 2008; 315 (2): 437-47.


Identification and gene expression of versican during early development of Xenopus., Casini P., Int J Dev Biol. January 1, 2008; 52 (7): 993-8.      


Identification and preliminary function study of Xenopus laevis DRR1 gene., Zhao XY., Biochem Biophys Res Commun. September 14, 2007; 361 (1): 74-8.            


The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology., Handrigan GR., Biol Rev Camb Philos Soc. February 1, 2007; 82 (1): 1-25.


Somite compartments in anamniotes., Scaal M., Anat Embryol (Berl). December 1, 2006; 211 Suppl 1 9-19.


Regulated expression of FLRT genes implies a functional role in the regulation of FGF signalling during mouse development., Haines BP., Dev Biol. September 1, 2006; 297 (1): 14-25.


Sclerotome development and morphogenesis: when experimental embryology meets genetics., Monsoro-Burq AH., Int J Dev Biol. January 1, 2005; 49 (2-3): 301-8.


A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration., Coles E., Development. November 1, 2004; 131 (21): 5309-17.      


Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm., El-Hodiri H., Int J Dev Biol. January 1, 2001; 45 (1): 265-71.        


Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus., Linker C., Dev Biol. August 15, 2000; 224 (2): 215-25.              


Zic1 regulates the patterning of vertebral arches in cooperation with Gli3., Aruga J., Mech Dev. December 1, 1999; 89 (1-2): 141-50.


Xenopus cadherin-11 (Xcadherin-11) expression requires the Wg/Wnt signal., Hadeball B., Mech Dev. March 1, 1998; 72 (1-2): 101-13.        


Control of dorsoventral somite patterning by Wnt-1 and beta-catenin., Capdevila J., Dev Biol. January 15, 1998; 193 (2): 182-94.


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos., Jen WC., Development. March 1, 1997; 124 (6): 1169-78.                


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              


Expression of tenascin mRNA in mesoderm during Xenopus laevis embryogenesis: the potential role of mesoderm patterning in tenascin regionalization., Umbhauer M., Development. September 1, 1992; 116 (1): 147-57.            


Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts., Su MW., J Cell Biol. October 1, 1991; 115 (2): 565-75.                


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA., Development. February 1, 1991; 111 (2): 287-98.          


A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest., Hopwood ND., Cell. December 1, 1989; 59 (5): 893-903.                    


The distribution of tenascin coincides with pathways of neural crest cell migration., Mackie EJ., Development. January 1, 1988; 102 (1): 237-50.              


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          

???pagination.result.page??? 1