Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (86) Expression Attributions Wiki
XB-ANAT-3922

Papers associated with adenohypophysis

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Electron microscopic observations on the fine structure of the adenohypophysis of Xenopus laevis., Srebro Z., Folia Biol (Krakow). January 1, 1965; 13 (2): 103-8.


[Functional morphology of the adenohypophysis of anurans (author''s transl)]., Pehlemann FW., Fortschr Zool. January 1, 1974; 22 (2-3): 204-27.


[Electronmicroscopical, functional morphological, morphometric analysis of anterior pituitary of Xenopus leavis (Anura)]., Pehlemann FW., Verh Anat Ges. January 1, 1976; (70 Pt 1): 39-42.


[The ultrastructure of four categories of pars distalis cells of Nectophrynoides occidentalis Angel (Amphibia, Anoura Vivipara)]., Zuber-Vogeli M., Gen Comp Endocrinol. March 1, 1976; 28 (3): 299-312.


Evidence for corticotropin releasing factor (CRF) synthesis in the preoptic nucleus of Xenopus laevis tadpoles: a preliminary report based on lesion experiments., Notenboom CD., Cell Tissue Res. June 11, 1976; 169 (1): 23-31.


Some morphogenetic features of the adenohypophysical primordium of early Xenopus laevis tadpoles., Erik N., Cell Tissue Res. May 16, 1977; 180 (2): 223-30.


Immunohistochemistry of the adenohypophysis of non-mammalian vertebrates., Doerr-Schott J., Acta Histochem Suppl. January 1, 1980; 22 185-223.


Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone., Kelley DB., J Comp Neurol. June 20, 1981; 199 (2): 221-31.


Cerebrospinal fluid-contacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis., Blähser S., Cell Tissue Res. January 1, 1982; 224 (3): 693-7.


Characterization of proopiocortin converting activity in rat anterior pituitary secretory granules., Chang TL., Endocrinology. May 1, 1983; 112 (5): 1832-8.


Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog, Xenopus laevis., Roy EJ., Neuroendocrinology. January 1, 1986; 42 (1): 51-6.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL., Dev Biol. May 1, 1986; 391 (2): 193-200.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


The novel pituitary polypeptide 7B2 is a highly-conserved protein coexpressed with proopiomelanocortin., Martens GJ., Eur J Biochem. April 15, 1989; 181 (1): 75-9.


Chloride channels mediate the response to gonadotropin-releasing hormone (GnRH) in Xenopus oocytes injected with rat anterior pituitary mRNA., Yoshida S., Mol Endocrinol. December 1, 1989; 3 (12): 1953-60.


Expression of functional pituitary somatostatin receptors in Xenopus oocytes., White MM., Proc Natl Acad Sci U S A. January 1, 1990; 87 (1): 133-6.


Immunocytochemical localization of the subunits of glycoprotein hormones (LH, FSH, and TSH) in the bullfrog pituitary gland using monoclonal antibodies and polyclonal antiserum., Tanaka S., Gen Comp Endocrinol. January 1, 1990; 77 (1): 88-97.              


Mapping of the presumptive brain regions in the neural plate of Xenopus laevis., Eagleson GW., J Neurobiol. April 1, 1990; 21 (3): 427-40.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor., Straub RE., Proc Natl Acad Sci U S A. December 1, 1990; 87 (24): 9514-8.


Ornithine decarboxylase immunoreactivity in the pituitary gland. A comparative lightmicroscopical study., Müller M., Cell Mol Biol. January 1, 1991; 37 (2): 119-24.


Cephalic expression and molecular characterization of Xenopus En-2., Hemmati-Brivanlou A., Development. March 1, 1991; 111 (3): 715-24.    


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


The complete amino acid sequence of growth hormone of the bullfrog (Rana catesbeiana)., Kobayashi T., Biochim Biophys Acta. July 12, 1991; 1078 (3): 383-7.


Angiotensin receptors from rat liver, brain and pituitary gland. Expression of two subtypes in Xenopus oocytes., Cantau B., Biochem J. August 1, 1991; 277 ( Pt 3) 729-33.


Isolation and functional expression of a mammalian prohormone processing enzyme, murine prohormone convertase 1., Korner J., Proc Natl Acad Sci U S A. August 1, 1991; 88 (15): 6834-8.


Purification and characterization of joining peptide and N-terminal peptide of proopiomelanocortin from the pars distalis of the bullfrog pituitary., Iwamuro S., Peptides. January 1, 1992; 13 (4): 729-35.


Localization of binding sites for atrial natriuretic factor and angiotensin II in the central nervous system of the clawed toad Xenopus laevis., Kloas W., Cell Tissue Res. February 1, 1992; 267 (2): 365-73.


A Rat Pituitary Tumour K(+) Channel Expressed in Frog Oocytes Induces a Transient K(+) Current Indistinguishable from that Recorded in Native Cells., Meyerhof W., J Neuroendocrinol. April 1, 1992; 4 (2): 245-53.


Molecular cloning and expression of a rat V1a arginine vasopressin receptor., Morel A., Nature. April 9, 1992; 356 (6369): 523-6.


Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells., de la Peña P., Biochem J. June 15, 1992; 284 ( Pt 3) 891-9.


Cloning and functional expression of a mouse gonadotropin-releasing hormone receptor., Tsutsumi M., Mol Endocrinol. July 1, 1992; 6 (7): 1163-9.


Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor., Reinhart J., J Biol Chem. October 25, 1992; 267 (30): 21281-4.


Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties., de la Peña P., J Biol Chem. December 25, 1992; 267 (36): 25703-8.


Functional expression and molecular characterization of the thyrotrophin-releasing hormone receptor from the rat anterior pituitary gland., Sellar RE., J Mol Endocrinol. April 1, 1993; 10 (2): 199-206.


Immunocytochemical identification of growth hormone (GH) cells in the pituitary of three anuran species using an antiserum against purified bullfrog GH., Olivereau M., Cell Tissue Res. December 1, 1993; 274 (3): 627-30.


Truncated K+ channel DNA sequences specifically suppress lymphocyte K+ channel gene expression., Tu L., Biophys J. January 1, 1995; 68 (1): 147-56.


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            


Immunohistochemical studies on the development of TSH cells in the pituitary of Xenopus laevis larvae., Ogawa K., J Vet Med Sci. June 1, 1995; 57 (3): 539-42.    


Initiation of anterior head-specific gene expression in uncommitted ectoderm of Xenopus laevis by ammonium chloride., Mathers PH., Dev Biol. October 1, 1995; 171 (2): 641-54.    


Constitutive transactivation by the thyroid hormone receptor and a novel pattern of activity of its oncogenic homolog v-ErbA in Xenopus oocytes., Nagl SB., Mol Endocrinol. November 1, 1995; 9 (11): 1522-32.


A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells., Saito M., J Biol Chem. May 2, 1997; 272 (18): 11710-7.


Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus., McGrew LL., Mech Dev. December 1, 1997; 69 (1-2): 105-14.          


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas., Newcomb R., Biochemistry. November 3, 1998; 37 (44): 15353-62.


Production of a recombinant newt growth hormone and its application for the development of a radioimmunoassay., Yamamoto K., Gen Comp Endocrinol. January 1, 2000; 117 (1): 103-16.


Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development., Holling TM., Brain Res Mol Brain Res. January 10, 2000; 75 (1): 70-5.      


Occurrence of immunoreactive Activin/Inhibin beta(B) in thyrotropes and gonadotropes in the bullfrog pituitary: possible Paracrine/Autocrine effects of activin B on gonadotropin secretion., Uchiyama H., Gen Comp Endocrinol. April 1, 2000; 118 (1): 68-76.            

???pagination.result.page??? 1 2 ???pagination.result.next???