Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (353) Attributions Wiki
XB-STAGE-40

Papers associated with NF stage 22

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification., Hunt RK, Jacobson M., Proc Natl Acad Sci U S A. September 1, 1974; 71 (9): 3616-20.


Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802)., Muntz L., J Embryol Exp Morphol. June 1, 1975; 33 (3): 757-74.


Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials., Lamborghini JE, Revenaugh M, Spitzer NC., J Comp Neurol. February 15, 1979; 183 (4): 741-52.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW, Keller RE, Malacinski GM., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


Development of the marginal zone in the rhombenecephalon of Xenopus laevis., Kevetter GA, Lasek RJ., Dev Biol. June 1, 1982; 256 (2): 195-208.


Visuotectal projections following temporary transplantation of embryonic eyes to the body in Xenopus laevis., Munro NS, Beazley LD., J Embryol Exp Morphol. October 1, 1982; 71 97-108.


Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis., Chow I, Cohen MW., J Physiol. June 1, 1983; 339 553-71.


The early development of the primary sensory neurones in an amphibian embryo: a scanning electron microscope study., Taylor JS, Roberts A., J Embryol Exp Morphol. June 1, 1983; 75 49-66.


Differential participation of ventral and dorsolateral mesoderms in the hemopoiesis of Xenopus, as revealed in diploid-triploid or interspecific chimeras., Maéno M, Tochinai S, Katagiri C., Dev Biol. August 1, 1985; 110 (2): 503-8.


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA, Woodland HR., Cell. January 31, 1986; 44 (2): 345-55.                


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW, Jenks BG, Van Overbeeke AP., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR, Melton DA., Development. March 1, 1987; 99 (3): 311-25.                  


Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis., Kay BK, Shah AJ, Halstead WE., J Cell Biol. April 1, 1987; 104 (4): 841-7.              


Expression of c-myc proto-oncogene during the early development of Xenopus laevis., Nishikura K., Oncogene Res. July 1, 1987; 1 (2): 179-91.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR, Elinson RP., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine., Roberts A, Dale N, Ottersen OP, Storm-Mathisen J., Development. July 1, 1988; 103 (3): 447-61.


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            


Development of myotomal cells in Xenopus laevis larvae., Huang CL, Hockaday AR., J Anat. August 1, 1988; 159 129-36.


The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos., Epperlein HH, Halfter W, Tucker RP., Development. August 1, 1988; 103 (4): 743-56.                  


The expression of epidermal antigens in Xenopus laevis., Itoh K, Yamashita A, Kubota HY., Development. September 1, 1988; 104 (1): 1-14.                        


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG, Gainer H., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA, Polson AG, Klymkowsky MW., Development. January 1, 1989; 105 (1): 61-74.                      


Developmental changes in the open time and conductance of acetylcholine receptors in aneural cultured Xenopus myocytes treated with cycloheximide or tunicamycin., Carlson CG, Leonard RJ., Brain Res Dev Brain Res. March 1, 1989; 46 (1): 61-8.


Spatial aspects of neural induction in Xenopus laevis., Jones EA, Woodland HR., Development. December 1, 1989; 107 (4): 785-91.          


Development of calcitonin gene-related peptide (CGRP) immunoreactivity in relationship to the formation of neuromuscular junctions in Xenopus myotomal muscle., Peng HB, Chen QM, de Biasi S, Zhu DL., J Comp Neurol. December 22, 1989; 290 (4): 533-43.


Developmental expression of the creatine kinase isozyme system of Xenopus: maternally derived CK-IV isoform persists far beyond the degradation of its maternal mRNA and into the zygotic expression period., Robert J, Wolff J, Jijakli H, Graf JD, Karch F, Kobel HR., Development. March 1, 1990; 108 (3): 507-14.


The distribution of E-cadherin during Xenopus laevis development., Levi G, Gumbiner B, Thiery JP., Development. January 1, 1991; 111 (1): 159-69.                


42Sp48 in previtellogenic Xenopus oocytes is structurally homologous to EF-1 alpha and may be a stage-specific elongation factor., Coppard NJ, Poulsen K, Madsen HO, Frydenberg J, Clark BF., J Cell Biol. January 1, 1991; 112 (2): 237-43.


Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain., Sato SM, Sargent TD., Development. July 1, 1991; 112 (3): 747-53.            


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR, Sato SM., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


EP-cadherin in muscles and epithelia of Xenopus laevis embryos., Levi G, Ginsberg D, Girault JM, Sabanay I, Thiery JP, Geiger B., Development. December 1, 1991; 113 (4): 1335-44.              


Transient expression of XMyoD in non-somitic mesoderm of Xenopus gastrulae., Frank D, Harland RM., Development. December 1, 1991; 113 (4): 1387-93.        


The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis., Graziadei PP, Monti-Graziadei AG., Neuroscience. January 1, 1992; 46 (3): 617-29.


Expression and potential functions of G-protein alpha subunits in embryos of Xenopus laevis., Otte AP, McGrew LL, Olate J, Nathanson NM, Moon RT., Development. September 1, 1992; 116 (1): 141-6.        


Characterization of a Xenopus laevis ribonucleoprotein endoribonuclease. Isolation of the RNA component and its expression during development., Bennett JL, Jeong-Yu S, Clayton DA., J Biol Chem. October 25, 1992; 267 (30): 21765-72.            


Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos., Wolda SL, Moody CJ, Moon RT., Dev Biol. January 1, 1993; 155 (1): 46-57.            


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M, Melton DA., Development. December 1, 1993; 119 (4): 1161-73.              


Expression of GTP-binding protein gene drg during Xenopus laevis development., Kumar S, Kumar S, Iwao M, Yamagishi T, Noda M, Asashima M., Int J Dev Biol. December 1, 1993; 37 (4): 539-46.          


Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip., Gont LK, Steinbeisser H, Blumberg B, de Robertis EM., Development. December 1, 1993; 119 (4): 991-1004.                


Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos., Winning RS, Sargent TD., Mech Dev. June 1, 1994; 46 (3): 219-29.              


Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation., Taira M, Otani H, Jamrich M, Dawid IB., Development. June 1, 1994; 120 (6): 1525-36.        


Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo., Saint-Jeannet JP, Thiery JP, Koteliansky VE., Dev Biol. August 1, 1994; 164 (2): 374-82.          


Maturation of neurites in mixed cultures of spinal cord neurons and muscle cells from Xenopus laevis embryos followed with antibodies to neurofilament proteins., Lin W, Szaro BG., J Neurobiol. October 1, 1994; 25 (10): 1235-48.


Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption., Hotary KB, Robinson KR., Dev Biol. December 1, 1994; 166 (2): 789-800.


Activation of Xenopus MyoD transcription by members of the MEF2 protein family., Wong MW, Pisegna M, Lu MF, Leibham D, Perry M., Dev Biol. December 1, 1994; 166 (2): 683-95.              


Induction of the prospective neural crest of Xenopus., Mayor R, Morgan R, Sargent MG., Development. March 1, 1995; 121 (3): 767-77.                  


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL, Cho KW., Development. April 1, 1995; 121 (4): 993-1004.              


115 kDa protein from Xenopus laevis embryos recognized by antibodies directed against the Xenopus homeoprotein XIHbox 1., Flavin M, Saint-Jeannet JP, Duprat AM, Strauss F., Int J Dev Biol. April 1, 1995; 39 (2): 309-15.            


Integrin alpha 5 during early development of Xenopus laevis., Joos TO, Whittaker CA, Meng F, DeSimone DW, Gnau V, Hausen P., Mech Dev. April 1, 1995; 50 (2-3): 187-99.                    


Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ, Beumer TL, Peterson-Maduro J, Stegeman BI, Karg HA, van der Vliet PC, Destrée OH., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            

???pagination.result.page??? 1 2 3 4 5 6 7 8 ???pagination.result.next???