Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (43) Expression Attributions Wiki

Papers associated with sarcomere

Limit to papers also referencing gene:
Results 1 - 43 of 43 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Cardiac telocytes exist in the adult Xenopus tropicalis heart., Lv L., J Cell Mol Med. January 1, 2020; 24 (4): 2531-2541.                            

Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site., Smith SJ., PLoS One. January 1, 2020; 15 (7): e0235433.                                            

The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan., Woltering JM., BMC Dev Biol. January 1, 2018; 18 (1): 8.                              

Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus., Marshall L., PLoS One. January 1, 2017; 12 (3): e0173418.                

A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)., Usukura E., Sci Rep. January 1, 2017; 7 (1): 6462.                            

The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly., Smith SJ., Dev Biol. August 15, 2016; 416 (2): 373-88.                                                      

Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish., Xiao C., Nat Commun. January 1, 2016; 7 13787.                

A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation., Jang DG., Dev Biol. September 1, 2015; 405 (1): 1-9.                                    

Passive stiffness of hindlimb muscles in anurans with distinct locomotor specializations., Danos N., Zoology (Jena). May 9, 2015; .

Contractile activity is required for Z-disc sarcomere maturation in vivo., Geach TJ., Genesis. May 1, 2015; 53 (5): 299-307.                

Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis., Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.                                                  

Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart., Warkman AS., Cytoskeleton (Hoboken). May 1, 2012; 69 (5): 324-35.  

Facioscapulohumeral muscular dystrophy region gene 1 is a dynamic RNA-associated and actin-bundling protein., Sun CY., J Mol Biol. August 12, 2011; 411 (2): 397-416.

Modeling of supramolecular centrosymmetry effect on sarcomeric SHG intensity pattern of skeletal muscles., Rouède D., Biophys J. July 20, 2011; 101 (2): 494-503.

Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser., Recher G., Biomed Opt Express. January 19, 2011; 2 (2): 374-84.          

Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker., Geach TJ., BMC Dev Biol. July 16, 2010; 10 75.                    

Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance., Sadikot T., Dev Dyn. April 1, 2010; 239 (4): 1124-35.                  

Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy., Recher G., Opt Express. October 26, 2009; 17 (22): 19763-77.

Hypertrophy of mature Xenopus muscle fibres in culture induced by synergy of albumin and insulin., Jaspers RT., Pflugers Arch. October 1, 2008; 457 (1): 161-70.

Xtn3 is a developmentally expressed cardiac and skeletal muscle-specific novex-3 titin isoform., Brown DD., Gene Expr Patterns. October 1, 2006; 6 (8): 913-8.          

Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments., Mercer KB., Mol Biol Cell. September 1, 2006; 17 (9): 3832-47.

TBX5 is required for embryonic cardiac cell cycle progression., Goetz SC., Development. July 1, 2006; 133 (13): 2575-84.                

Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis., Campbell NR., Dev Biol. April 1, 2006; 292 (1): 253-64.    

Assembling the myofibril: coordinating contractile cable construction with calcium., Ferrari MB., Cell Biochem Biophys. January 1, 2006; 45 (3): 317-37.

Adaptation of muscle size and myofascial force transmission: a review and some new experimental results., Huijing PA., Scand J Med Sci Sports. December 1, 2005; 15 (6): 349-80.

Calcium transients regulate titin organization during myofibrillogenesis., Harris BN., Cell Motil Cytoskeleton. March 1, 2005; 60 (3): 129-39.

Calcium transients regulate patterned actin assembly during myofibrillogenesis., Li H., Dev Dyn. February 1, 2004; 229 (2): 231-42.

Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis., Ramachandran I., Cell Motil Cytoskeleton. May 1, 2003; 55 (1): 61-72.

Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes., Kasahara H., J Mol Cell Cardiol. March 1, 2003; 35 (3): 243-56.

Twitch and tetanic tension during culture of mature Xenopus laevis single muscle fibres., Jaspers RT., Arch Physiol Biochem. December 1, 2001; 109 (5): 410-7.

Spark- and ember-like elementary Ca2+ release events in skinned fibres of adult mammalian skeletal muscle., Kirsch WG., J Physiol. December 1, 2001; 537 (Pt 2): 379-89.

A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes., Ferrari MB., J Cell Biol. June 15, 1998; 141 (6): 1349-56.            

Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis., Buschman HP., J Physiol. October 15, 1996; 496 ( Pt 2) 503-19.

Spontaneous calcium transients regulate myofibrillogenesis in embryonic Xenopus myocytes., Ferrari MB., Dev Biol. September 15, 1996; 178 (2): 484-97.

Twitch characteristics and energy metabolites of mature muscle fibres of Xenopus laevis in culture., Lee-De Groot MB., J Muscle Res Cell Motil. August 1, 1996; 17 (4): 439-48.

Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat., Hofmann PA., Circ Res. May 1, 1992; 70 (5): 885-92.

Development of myotomal cells in Xenopus laevis larvae., Huang CL., J Anat. August 1, 1988; 159 129-36.

Dependency of the force-velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis., Stienen GJ., Biophys J. June 1, 1988; 53 (6): 849-55.

The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line., Fürst DO., J Cell Biol. May 1, 1988; 106 (5): 1563-72.

Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C., Elzinga G., J Physiol. December 1, 1987; 393 399-412.

In vivo phosphorylation of titin and nebulin in frog skeletal muscle., Somerville LL., Biochem Biophys Res Commun. September 30, 1987; 147 (3): 986-92.      

Immunocytochemical studies using a monoclonal antibody to bovine cardiac titin on intact and extracted myofibrils., Wang SM., J Muscle Res Cell Motil. June 1, 1985; 6 (3): 293-312.

Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin., Blinks JR., J Physiol. April 1, 1978; 277 291-323.

Page(s): 1