Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2124) Expression Attributions Wiki
XB-ANAT-455

Papers associated with connective tissue (and snai1)

Limit to papers also referencing gene:
Show all connective tissue papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Genetically programmed retinoic acid deficiency during gastrulation phenocopies most known developmental defects due to acute prenatal alcohol exposure in FASD., Petrelli B., Front Cell Dev Biol. January 1, 2023; 11 1208279.                    


Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation., Wills AE., Dev Cell. February 9, 2015; 32 (3): 345-57.                  


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 1, 2014; .


The evolution and conservation of left-right patterning mechanisms., Blum M., Development. April 1, 2014; 141 (8): 1603-13.              


Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration., Fuentealba J., Dev Biol. June 15, 2013; 378 (2): 74-82.          


The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition., Barriga EH., J Cell Biol. May 27, 2013; 201 (5): 759-76.                  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Calponin 2 acts as an effector of noncanonical Wnt-mediated cell polarization during neural crest cell migration., Ulmer B., Cell Rep. March 28, 2013; 3 (3): 615-21.              


Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development., Xu Y, Xu Y., Cell. December 7, 2012; 151 (6): 1200-13.                


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS., Dev Biol. June 1, 2012; 366 (1): 10-21.


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate., Harney AS., PLoS One. January 1, 2012; 7 (2): e32318.            


Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.              


Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis., Ohkawara B., Dev Cell. March 15, 2011; 20 (3): 303-14.                        


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.                              


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.                            


Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis., Morita H., Development. April 1, 2010; 137 (8): 1315-25.                            


The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis., Almeida AD., Neural Dev. January 4, 2010; 5 1.                              


Unexpected functional redundancy between Twist and Slug (Snail2) and their feedback regulation of NF-kappaB via Nodal and Cerberus., Zhang C., Dev Biol. July 15, 2009; 331 (2): 340-9.    


A microarray screen for direct targets of Zic1 identifies an aquaporin gene, aqp-3b, expressed in the neural folds., Cornish EJ., Dev Dyn. May 1, 2009; 238 (5): 1179-94.                


Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1., Herr P., Development. May 1, 2008; 135 (10): 1813-22.                    


FoxN3 is required for craniofacial and eye development of Xenopus laevis., Schuff M., Dev Dyn. January 1, 2007; 236 (1): 226-39.                            


Role of X-Delta-2 in the early neural development of Xenopus laevis., Peres JN., Dev Dyn. March 1, 2006; 235 (3): 802-10.                                              


Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning., Houston DW., Development. November 1, 2005; 132 (21): 4845-55.              


Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects., McNulty CL., Development. June 1, 2005; 132 (12): 2861-71.                    


Induction of the neural crest and the opportunities of life on the edge., Huang X., Dev Biol. November 1, 2004; 275 (1): 1-11.


A new role for BMP5 during limb development acting through the synergic activation of Smad and MAPK pathways., Zuzarte-Luís V., Dev Biol. August 1, 2004; 272 (1): 39-52.


The RNA-binding protein Vg1 RBP is required for cell migration during early neural development., Yaniv K., Development. December 1, 2003; 130 (23): 5649-61.              


The transcription factor Sox9 is required for cranial neural crest development in Xenopus., Spokony RF., Development. January 1, 2002; 129 (2): 421-32.        


A novel function for the Xslug gene: control of dorsal mesendoderm development by repressing BMP-4., Mayor R., Mech Dev. October 1, 2000; 97 (1-2): 47-56.  


Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus., Linker C., Dev Biol. August 15, 2000; 224 (2): 215-25.              


Inhibition of neural crest migration in Xenopus using antisense slug RNA., Carl TF., Dev Biol. September 1, 1999; 213 (1): 101-15.


X-twi is expressed prior to gastrulation in presumptive neurectodermal and mesodermal cells in dorsalized and ventralized Xenopus laevis embryos., Stoetzel C., Int J Dev Biol. September 1, 1998; 42 (6): 747-56.                


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm., Essex LJ., Dev Dyn. October 1, 1993; 198 (2): 108-22.              


Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development., Smith DE., Development. December 1, 1992; 116 (4): 1033-9.

???pagination.result.page??? 1