Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2124) Expression Attributions Wiki
XB-ANAT-455

Papers associated with connective tissue (and fgf2)

Limit to papers also referencing gene:
Show all connective tissue papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

E-cigarette aerosol exposure can cause craniofacial defects in Xenopus laevis embryos and mammalian neural crest cells., Kennedy AE., PLoS One. September 8, 2017; 12 (9): e0185729.                      


Heparanase 2, mutated in urofacial syndrome, mediates peripheral neural development in Xenopus., Roberts NA., Hum Mol Genet. August 15, 2014; 23 (16): 4302-14.                              


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice., Xiang W., J Cell Mol Med. February 1, 2011; 15 (2): 359-74.                  


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O., Dev Biol. December 15, 2009; 336 (2): 313-26.          


BMP inhibition initiates neural induction via FGF signaling and Zic genes., Marchal L., Proc Natl Acad Sci U S A. October 13, 2009; 106 (41): 17437-42.        


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


Differential expression of two TEF-1 (TEAD) genes during Xenopus laevis development and in response to inducing factors., Naye F., Int J Dev Biol. January 1, 2007; 51 (8): 745-52.                  


Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction., Satow R., Dev Cell. December 1, 2006; 11 (6): 763-74.              


Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo., Carron C., Mech Dev. November 1, 2005; 122 (11): 1234-47.                


FGF signal regulates gastrulation cell movements and morphology through its target NRH., Chung HA., Dev Biol. June 1, 2005; 282 (1): 95-110.                          


FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation., Sivak JM., Dev Cell. May 1, 2005; 8 (5): 689-701.      


Global analysis of RAR-responsive genes in the Xenopus neurula using cDNA microarrays., Arima K., Dev Dyn. February 1, 2005; 232 (2): 414-31.                          


Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos., Galli A., Development. October 1, 2003; 130 (20): 4919-29.              


Induction and patterning of the telencephalon in Xenopus laevis., Lupo G., Development. December 1, 2002; 129 (23): 5421-36.                            


Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos., Iraha F., Dev Growth Differ. October 1, 2002; 44 (5): 395-407.            


Adsorption and release properties of growth factors from biodegradable implants., Ziegler J., J Biomed Mater Res. March 5, 2002; 59 (3): 422-8.


Notochord patterning of the endoderm., Cleaver O., Dev Biol. June 1, 2001; 234 (1): 1-12.      


BMP-4 of Xenopus laevis stimulates differentiation of human primary osteoblast-like cells., Mayr-Wohlfart U., J Bone Joint Surg Br. January 1, 2001; 83 (1): 144-7.


The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning., Kazanskaya O., Development. November 1, 2000; 127 (22): 4981-92.              


[Stimulation of primary osteoblast cultures with rh-TGF-beta, rh-bFGF, rh-BMP 2 and rx-BMP 4 in an in vitro model]., Kessler S., Orthopade. February 1, 2000; 29 (2): 107-11.


Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin., Miyanaga Y., Dev Genes Evol. February 1, 1999; 209 (2): 69-76.


Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm., Huber TL., Blood. December 1, 1998; 92 (11): 4128-37.


Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins., Sparrow DB., Mech Dev. February 1, 1998; 71 (1-2): 151-63.            


Neural induction and patterning by fibroblast growth factor, notochord and somite tissue in Xenopus., Barnett MW., Dev Growth Differ. February 1, 1998; 40 (1): 47-57.


Regulation of SPARC expression during early Xenopus development: evolutionary divergence and conservation of DNA regulatory elements between amphibians and mammals., Damjanovski S., Dev Genes Evol. January 1, 1998; 207 (7): 453-61.


Involvement of NF-kappaB associated proteins in FGF-mediated mesoderm induction., Beck CW., Int J Dev Biol. January 1, 1998; 42 (1): 67-77.                  


FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus., Christen B., Dev Biol. December 15, 1997; 192 (2): 455-66.        


Studies on the role of fibroblast growth factor signaling in neurogenesis using conjugated/aged animal caps and dorsal ectoderm-grafted embryos., Xu RH., J Neurosci. September 15, 1997; 17 (18): 6892-8.


Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M., Development. June 1, 1997; 124 (11): 2225-34.                      


A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis., Chang C., Development. February 1, 1997; 124 (4): 827-37.                    


The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation., Stennard F., Development. December 1, 1996; 122 (12): 4179-88.      


Regulated expression of the retinoblastoma gene product by fibroblast growth factor but not by activin during mesoderm induction in Xenopus., Greenland J., Dev Genes Evol. December 1, 1996; 206 (5): 333-6.


The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm., Carnac G., Development. October 1, 1996; 122 (10): 3055-65.              


Maternal beta-catenin establishes a 'dorsal signal' in early Xenopus embryos., Wylie C., Development. October 1, 1996; 122 (10): 2987-96.              


Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4., Ladher R., Development. August 1, 1996; 122 (8): 2385-94.                          


Factors responsible for the establishment of the body plan in the amphibian embryo., Grunz H., Int J Dev Biol. February 1, 1996; 40 (1): 279-89.            


Developmental and differential regulations in gene expression of Xenopus pleiotrophic factors-alpha and -beta., Tsujimura A., Biochem Biophys Res Commun. September 14, 1995; 214 (2): 432-9.              


PDGF signalling is required for gastrulation of Xenopus laevis., Ataliotis P., Development. September 1, 1995; 121 (9): 3099-110.                  


Expression of Xkl-1, a Xenopus gene related to mammalian c-kit, in dorsal embryonic tissue., Kao KR., Mech Dev. March 1, 1995; 50 (1): 57-69.


The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development., Tang TL., Cell. February 10, 1995; 80 (3): 473-83.              


Regulation of the Xenopus labial homeodomain genes, HoxA1 and HoxD1: activation by retinoids and peptide growth factors., Kolm PJ., Dev Biol. January 1, 1995; 167 (1): 34-49.      


Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo., Saint-Jeannet JP., Dev Biol. August 1, 1994; 164 (2): 374-82.          


Spatial and temporal transcription patterns of the forkhead related XFD-2/XFD-2' genes in Xenopus laevis embryos., Lef J., Mech Dev. February 1, 1994; 45 (2): 117-26.        


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  


Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis., Ruiz i Altaba A., Development. September 1, 1992; 116 (1): 81-93.    


Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of alpha-smooth muscle actin., Saint-Jeannet JP., Development. August 1, 1992; 115 (4): 1165-73.          

???pagination.result.page??? 1 2 ???pagination.result.next???