Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2124) Expression Attributions Wiki
XB-ANAT-455

Papers associated with connective tissue (and tubb2b)

Limit to papers also referencing gene:
Show all connective tissue papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


Regulation of ECM degradation and axon guidance by growth cone invadosomes., Santiago-Medina M., Development. February 1, 2015; 142 (3): 486-96.                        


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


NumbL is essential for Xenopus primary neurogenesis., Nieber F., BMC Dev Biol. October 14, 2013; 13 36.                          


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development., Xu Y, Xu Y., Cell. December 7, 2012; 151 (6): 1200-13.                


Transgenic analysis of signaling pathways required for Xenopus tadpole spinal cord and muscle regeneration., Lin G., Anat Rec (Hoboken). October 1, 2012; 295 (10): 1532-40.


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M., Development. March 1, 2012; 139 (6): 1175-87.                    


Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells., Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.              


hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis., Liu Y., Development. July 1, 2011; 138 (14): 3079-90.                


Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis., Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.            


Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis., Bardine N., Dev Dyn. March 1, 2009; 238 (3): 755-65.              


Xenopus ADAM19 is involved in neural, neural crest and muscle development., Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.                      


A crucial role for hnRNP K in axon development in Xenopus laevis., Liu Y., Development. September 1, 2008; 135 (18): 3125-35.                


Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state., Nagatomo K., Dev Dyn. June 1, 2007; 236 (6): 1475-83.          


Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination., Hurtado R., Dev Dyn. October 1, 2006; 235 (10): 2811-6.          


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development., Olguín P., J Neurosci. March 8, 2006; 26 (10): 2820-9.                    


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


The function of Xenopus germ cell nuclear factor (xGCNF) in morphogenetic movements during neurulation., Barreto G., Dev Biol. May 15, 2003; 257 (2): 329-42.            


Depletion of the cell-cycle inhibitor p27(Xic1) impairs neuronal differentiation and increases the number of ElrC(+) progenitor cells in Xenopus tropicalis., Carruthers S., Mech Dev. May 1, 2003; 120 (5): 607-16.            


The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus., Vernon AE., Development. January 1, 2003; 130 (1): 85-92.          


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Gli2 functions in FGF signaling during antero-posterior patterning., Brewster R., Development. October 1, 2000; 127 (20): 4395-405.            


Primary neuronal differentiation in Xenopus embryos is linked to the beta(3) subunit of the sodium pump., Messenger NJ., Dev Biol. April 15, 2000; 220 (2): 168-82.                  


Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate., Hardcastle Z., Development. March 1, 2000; 127 (6): 1303-14.                  


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M., Development. February 1, 2000; 127 (4): 791-800.              


Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function., Kato Y., J Neurosci. November 1, 1999; 19 (21): 9364-73.          


A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos., Deblandre GA., Development. November 1, 1999; 126 (21): 4715-28.                  


Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension., Davidson LA., Development. October 1, 1999; 126 (20): 4547-56.              


Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis., Franco PG., Development. October 1, 1999; 126 (19): 4257-65.          


XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm., Bourguignon C., Development. December 1, 1998; 125 (24): 4889-900.                  


XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus., Dubois L., Curr Biol. February 12, 1998; 8 (4): 199-209.              


Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos., Salic AN., Development. December 1, 1997; 124 (23): 4739-48.              


Bone morphogenetic protein 2 in the early development of Xenopus laevis., Clement JH., Mech Dev. August 1, 1995; 52 (2-3): 357-70.            


The role of vertical and planar signals during the early steps of neural induction., Grunz H., Int J Dev Biol. June 1, 1995; 39 (3): 539-43.  


Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos., Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.                

???pagination.result.page??? 1