Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and hspa5)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Developmental regulation of cellular metabolism is required for intestinal elongation and rotation., Grzymkowski JK., Development. February 15, 2024; 151 (4):                                       


Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline., Regnault C., Proc Natl Acad Sci U S A. May 8, 2018; 115 (19): E4416-E4425.        


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling., Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.                        


Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa., Tam BM., J Neurosci. October 1, 2014; 34 (40): 13336-48.              


Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages., Lee-Liu D., Neural Dev. May 22, 2014; 9 12.              


Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis., Wiechmann AF., J Comp Neurol. April 15, 2012; 520 (6): 1115-27.                  


Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo., Tanegashima K., Development. November 1, 2009; 136 (21): 3543-8.      


Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos., Yuan L., Dev Dyn. October 1, 2007; 236 (10): 2844-51.              


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Examination of the stress-induced expression of the collagen binding heat shock protein, hsp47, in Xenopus laevis cultured cells and embryos., Hamilton AM., Comp Biochem Physiol A Mol Integr Physiol. January 1, 2006; 143 (1): 133-41.


Inhibition of protein tyrosine kinase activity disrupts early retinal development., Li M., Dev Biol. February 1, 2004; 266 (1): 209-21.


Enhanced accumulation of constitutive heat shock protein mRNA is an initial response of eye tissue to mild hyperthermia in vivo in adult Xenopus laevis., Ali A., Can J Physiol Pharmacol. November 1, 2002; 80 (11): 1119-23.


Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina., Rapaport DH., J Neurobiol. November 5, 2001; 49 (2): 129-41.          


Local inhibition of cortical rotation in Xenopus eggs by an anti-KRP antibody., Marrari Y., Dev Biol. August 15, 2000; 224 (2): 250-62.              


Constitutive and stress-inducible expression of the endoplasmic reticulum heat shock protein 70 gene family member, immunoglobulin-binding protein (BiP), during Xenopus laevis early development., Miskovic D., Dev Genet. January 1, 1999; 25 (1): 31-9.          


Inductive competence, its significance in retinal cell fate determination and a role for Delta-Notch signaling., Rapaport DH., Semin Cell Dev Biol. June 1, 1998; 9 (3): 241-7.    


Isolation and characterization of a cDNA encoding a Xenopus immunoglobulin binding protein, BiP (grp78)., Miskovic D., Comp Biochem Physiol B Biochem Mol Biol. February 1, 1997; 116 (2): 227-34.


Induction of glucose-regulated proteins in Xenopus laevis A6 cells., Winning RS., J Cell Physiol. August 1, 1989; 140 (2): 239-45.

???pagination.result.page??? 1