Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and alb)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Overlapping action of T3 and T4 during Xenopus laevis development., Tribondeau A., Front Endocrinol (Lausanne). January 1, 2024; 15 1360188.      


Developmental gene expression patterns in the brain and liver of Xenopus tropicalis during metamorphosis climax., Yaoita Y., Genes Cells. December 1, 2018; 23 (12): 998-1008.              


Quantitative Proteomics After Spinal Cord Injury (SCI) in a Regenerative and a Nonregenerative Stage in the Frog Xenopus laevis., Lee-Liu D., Mol Cell Proteomics. April 1, 2018; 17 (4): 592-606.                


Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests., Sun L., J Proteome Res. May 1, 2015; 14 (5): 2312-21.


Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro., Dzementsei A., Biol Open. December 15, 2013; 2 (12): 1279-87.          


TBX3 Directs Cell-Fate Decision toward Mesendoderm., Weidgang CE., Stem Cell Reports. August 29, 2013; 1 (3): 248-65.                


Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis., Caine ST., Dev Dyn. March 1, 2013; 242 (3): 219-29.          


One-step purification of assembly-competent tubulin from diverse eukaryotic sources., Widlund PO., Mol Biol Cell. November 1, 2012; 23 (22): 4393-401.            


Chemokine ligand Xenopus CXCLC (XCXCLC) regulates cell movements during early morphogenesis., Goto T., Dev Growth Differ. December 1, 2011; 53 (9): 971-81.            


Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth., Carlstrom LP., BMC Biol. November 30, 2011; 9 82.              


CTGF/CCN2 has a chemoattractive function but a weak adhesive property to embryonic carcinoma cells., Aguiar DP., Biochem Biophys Res Commun. October 7, 2011; 413 (4): 582-7.


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Implication of gap junction coupling in amphibian vitellogenin uptake., Mónaco ME., Zygote. May 1, 2007; 15 (2): 149-57.


NO66, a highly conserved dual location protein in the nucleolus and in a special type of synchronously replicating chromatin., Eilbracht J., Mol Biol Cell. April 1, 2004; 15 (4): 1816-32.                            


Cell-autonomous and signal-dependent expression of liver and intestine marker genes in pluripotent precursor cells from Xenopus embryos., Chen Y, Chen Y., Mech Dev. March 1, 2003; 120 (3): 277-88.                      


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Gene expression in the embryonic Xenopus liver., Zorn AM., Mech Dev. May 1, 2001; 103 (1-2): 153-7.                                                  


Exposure of rod outer segments to serum is not responsible for abnormal disk membrane morphogenesis in a model of retinal detachment., Kaplan MW., Curr Eye Res. August 1, 1998; 17 (8): 793-7.


Localization and purification of serum albumin in the testis of Xenopus laevis., Nakamura M., Zoolog Sci. April 1, 1994; 11 (2): 285-90.


Developmental and hormonal regulation of the Xenopus liver-type arginase gene., Xu Q., Eur J Biochem. February 1, 1993; 211 (3): 891-8.


Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells., Tigyi G., J Biol Chem. October 25, 1992; 267 (30): 21360-7.


Induction of acetylcholine receptor clustering by native polystyrene beads. Implication of an endogenous muscle-derived signalling system., Baker LP., J Cell Sci. July 1, 1992; 102 ( Pt 3) 543-55.


A factor that activates oscillatory chloride currents in Xenopus oocytes copurifies with a subfraction of serum albumin., Tigyi G., J Biol Chem. November 5, 1991; 266 (31): 20602-9.


Atlantic salmon (Salmo salar) serum albumin: cDNA sequence, evolution, and tissue expression., Byrnes L., DNA Cell Biol. November 1, 1990; 9 (9): 647-55.


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.              


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B., Development. December 1, 1988; 104 (4): 533-48.                      


In vitro maintenance of spermatogenesis in Xenopus laevis testis explants cultured in serum-free media., Risley MS., Biol Reprod. May 1, 1987; 36 (4): 985-97.


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line., Benavente R., Proc Natl Acad Sci U S A. September 1, 1985; 82 (18): 6176-80.          


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


[Use of colloidal gold in ultrastructural cytochemistry]., Raska I., Cesk Patol. February 1, 1985; 21 (1): 28-37.


Karyoskeletal proteins and the organization of the amphibian oocyte nucleus., Benavente R., J Cell Sci Suppl. January 1, 1984; 1 161-86.                    


Mechanism for the selection of nuclear polypeptides in Xenopus oocytes., Feldherr CM., J Cell Biol. July 1, 1978; 78 (1): 168-75.

???pagination.result.page??? 1