Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and msi1)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Thyroid hormone-induced expression of Foxl1 in subepithelial fibroblasts correlates with adult stem cell development during Xenopus intestinal remodeling., Hasebe T., Sci Rep. November 26, 2020; 10 (1): 20715.                


The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis., Naef V., Front Cell Dev Biol. January 1, 2020; 8 549533.            


Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells., Chernoff EAG., Front Cell Neurosci. January 1, 2018; 12 45.                          


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Knockout of RNA Binding Protein MSI2 Impairs Follicle Development in the Mouse Ovary: Characterization of MSI1 and MSI2 during Folliculogenesis., Sutherland JM., Biomolecules. June 26, 2015; 5 (3): 1228-44.              


Neural stem and progenitor cell fate transition requires regulation of Musashi1 function., MacNicol AM., BMC Dev Biol. March 18, 2015; 15 15.        


RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family., Sutherland JM., Asian J Androl. January 1, 2015; 17 (4): 529-36.      


Gonad RNA-specific qRT-PCR analyses identify genes with potential functions in schistosome reproduction such as SmFz1 and SmFGFRs., Hahnel S., Front Genet. June 10, 2014; 5 170.                


Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine., Ishizuya-Oka A., PLoS One. January 1, 2014; 9 (9): e107611.                            


Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.              


Autoregulation of Musashi1 mRNA translation during Xenopus oocyte maturation., Arumugam K., Mol Reprod Dev. August 1, 2012; 79 (8): 553-63.


Analyzing the function of a hox gene: an evolutionary approach., Michaut L., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis., Shi YB., Cell Biosci. September 6, 2011; 1 (1): 30.        


Translational control in germ cell development: A role for the RNA-binding proteins Musashi-1 and Musashi-2., Gunter KM., IUBMB Life. September 1, 2011; 63 (9): 678-85.


Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation., MacNicol MC., Cell Cycle. January 1, 2011; 10 (1): 39-44.


Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine., Hasebe T., Stem Cells. January 1, 2011; 29 (1): 154-61.


Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1., Sharma P., Neuron. November 4, 2010; 68 (3): 442-55.


Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt., Kaneko J., Neurosci Lett. February 6, 2009; 450 (3): 252-7.


Function and regulation of the mammalian Musashi mRNA translational regulator., MacNicol AM., Biochem Soc Trans. June 1, 2008; 36 (Pt 3): 528-30.


Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis., Ishizuya-Oka A., Dev Dyn. December 1, 2007; 236 (12): 3358-68.            


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation., Charlesworth A., EMBO J. June 21, 2006; 25 (12): 2792-801.


Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration., Ishizuya-Oka A., Dev Growth Differ. December 1, 2005; 47 (9): 601-7.        


Remodeling of the intestine during metamorphosis of Xenopus laevis., Schreiber AM., Proc Natl Acad Sci U S A. March 8, 2005; 102 (10): 3720-5.              


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.          


Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS., Sakakibara S., J Neurosci. October 15, 2001; 21 (20): 8091-107.


A novel guanine exchange factor increases the competence of early ectoderm to respond to neural induction., Morgan R., Mech Dev. October 1, 1999; 88 (1): 67-72.        


A member of the Met/HGF-receptor family is expressed in a BMP-4-like pattern in the ectoderm of Xenopus gastrulae., Aberger F., Biochem Biophys Res Commun. February 3, 1997; 231 (1): 191-5.      


Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell., Sakakibara S., Dev Biol. June 15, 1996; 176 (2): 230-42.


The Xenopus homologue of hepatocyte growth factor-like protein is specifically expressed in the presumptive neural plate during gastrulation., Aberger F., Mech Dev. January 1, 1996; 54 (1): 23-37.                    


A developmentally regulated, nervous system-specific gene in Xenopus encodes a putative RNA-binding protein., Richter K., New Biol. June 1, 1990; 2 (6): 556-65.


Gene expression in the embryonic nervous system of Xenopus laevis., Richter K., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 8086-90.      

???pagination.result.page??? 1