Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14955) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism (and cftr)

Limit to papers also referencing gene:
Show all whole organism papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy., Yoon MJ., Nat Commun. March 29, 2021; 12 (1): 1955.                


FXYD protein isoforms differentially modulate human Na/K pump function., Meyer DJ., J Gen Physiol. December 7, 2020; 152 (12):                         


Engineered transfer RNAs for suppression of premature termination codons., Lueck JD., Nat Commun. February 18, 2019; 10 (1): 822.          


Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion., Knauf F., J Am Soc Nephrol. January 1, 2017; 28 (1): 242-249.


CFTR-β-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development., Liu Z., Cell Death Differ. January 1, 2017; 24 (1): 98-110.


Functional and molecular identification of a TASK-1 potassium channel regulating chloride secretion through CFTR channels in the shark rectal gland: implications for cystic fibrosis., Telles CJ., Am J Physiol Cell Physiol. December 1, 2016; 311 (6): C884-C894.


Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis., Faure G., J Mol Biol. July 17, 2016; 428 (14): 2898-915.


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation., Dacks AM., PLoS One. January 1, 2013; 8 (7): e69422.          


A universally conserved residue in the SUR1 subunit of the KATP channel is essential for translating nucleotide binding at SUR1 into channel opening., de Wet H., J Physiol. October 15, 2012; 590 (20): 5025-36.            


Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase., King JD., J Biol Chem. September 28, 2012; 287 (40): 33389-400.              


Regulation of ENaC biogenesis by the stress response protein SERP1., Faria D., Pflugers Arch. June 1, 2012; 463 (6): 819-27.


The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation., Rode B., Hum Mol Genet. March 15, 2012; 21 (6): 1287-98.


Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease., Leier G., Cell Physiol Biochem. January 1, 2012; 29 (5-6): 775-90.


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct., Shcheynikov N., J Physiol. August 15, 2008; 586 (16): 3813-24.


CFTR-dependent Cl- secretion in Xenopus laevis lung epithelium., Sommer D., Respir Physiol Neurobiol. August 15, 2007; 158 (1): 97-106.


2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties., Artigas P., Mol Pharmacol. December 1, 2006; 70 (6): 2015-26.


Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ., Yan W., Biol Reprod. June 1, 2004; 70 (6): 1619-25.  


Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates., Himmel B., EMBO Rep. January 1, 2004; 5 (1): 85-90.


[Regulation of the drug-sensitivity of anion channels via phosphorylation]., Yamazaki J., Nihon Yakurigaku Zasshi. November 1, 2003; 122 Suppl 67P-70P.


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Up-regulation of acid-gated Na(+) channels (ASICs) by cystic fibrosis transmembrane conductance regulator co-expression in Xenopus oocytes., Ji HL., J Biol Chem. March 8, 2002; 277 (10): 8395-405.


CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction., Smith SS., J Gen Physiol. October 1, 2001; 118 (4): 407-31.                                      


Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator., Boucherot A., J Membr Biol. July 1, 2001; 182 (1): 39-47.


Chromanol 293B, a blocker of the slow delayed rectifier K+ current (IKs), inhibits the CFTR Cl- current., Bachmann A., Naunyn Schmiedebergs Arch Pharmacol. June 1, 2001; 363 (6): 590-6.


Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis., Wagner CA., Cell Physiol Biochem. January 1, 2001; 11 (4): 209-18.


Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes., Mall M., Br J Pharmacol. August 1, 2000; 130 (8): 1884-92.


Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase., Müllner C., J Gen Physiol. May 1, 2000; 115 (5): 547-58.              


Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes., Peters KW., Am J Physiol. July 1, 1999; 277 (1): C174-80.


Vasoactive intestinal peptide, forskolin, and genistein increase apical CFTR trafficking in the rectal gland of the spiny dogfish, Squalus acanthias. Acute regulation of CFTR trafficking in an intact epithelium., Lehrich RW., J Clin Invest. February 15, 1998; 101 (4): 737-45.


Microtubule disruption inhibits AVT-stimulated Cl- secretion but not Na+ reabsorption in A6 cells., Morris RG., Am J Physiol. February 1, 1998; 274 (2): F300-14.


Microtubule disruption inhibits AVT-stimulated Cl - secretion but not Na + reabsorption in A6 cells., Morris RG., Am J Physiol Renal Physiol. February 1, 1998; 274 (2): F300-F314.


KVLQT channels are inhibited by the K+ channel blocker 293B., Bleich M., Pflugers Arch. August 1, 1997; 434 (4): 499-501.


Expression of the cystic fibrosis phenotype in a renal amphibian epithelial cell line., Ling BN., J Biol Chem. January 3, 1997; 272 (1): 594-600.


Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart., Hart P., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6343-8.


Both the wild type and a functional isoform of CFTR are expressed in kidney., Morales MM., Am J Physiol. June 1, 1996; 270 (6 Pt 2): F1038-48.


Coupled secretion of chloride and mucus in skin of Xenopus laevis: possible role for CFTR., Engelhardt JF., Am J Physiol. August 1, 1994; 267 (2 Pt 1): C491-500.


Expression of cystic fibrosis transmembrane regulator Cl- channels in heart., Levesque PC., Circ Res. October 1, 1992; 71 (4): 1002-7.


CFTR protein expression in primary and cultured epithelia., Zeitlin PL., Proc Natl Acad Sci U S A. January 1, 1992; 89 (1): 344-7.

???pagination.result.page??? 1