Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (12843) Expression Attributions Wiki
XB-ANAT-488

Papers associated with head (and grin1)

Limit to papers also referencing gene:
Show all head papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Recurrent seizure-related GRIN1 variant: Molecular mechanism and targeted therapy., Xu Y., Ann Clin Transl Neurol. July 1, 2021; 8 (7): 1480-1494.            


Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders., Tang W., Neuropharmacology. October 15, 2020; 177 108247.


Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases., Li J., Hum Mutat. December 1, 2019; 40 (12): 2393-2413.


An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups., Perszyk R., Elife. May 24, 2018; 7                                                                         


All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class., Castillo-Gómez E., Mol Psychiatry. December 1, 2017; 22 (12): 1776-1784.


Lin28 proteins are required for germ layer specification in Xenopus., Faas L., Development. March 1, 2013; 140 (5): 976-86.                      


A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons., Kostakis E., J Neurochem. November 1, 2011; 119 (3): 486-96.


The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit., Zhang Y, Zhang Y., J Neurosci. June 2, 2010; 30 (22): 7575-86.


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors., Masuko T., J Pharmacol Exp Ther. November 1, 2009; 331 (2): 522-30.


Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles., Ewald RC., Front Mol Neurosci. September 11, 2009; 2 4.          


The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors., Yuan H., J Biol Chem. May 8, 2009; 284 (19): 12862-73.


Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors., Cavara NA., BMC Neurosci. April 6, 2009; 10 32.      


Pharmacological characterization of recombinant NR1/NR2A NMDA receptors with truncated and deleted carboxy termini expressed in Xenopus laevis oocytes., Puddifoot CA., Br J Pharmacol. February 1, 2009; 156 (3): 509-18.


Binding of spermine and ifenprodil to a purified, soluble regulatory domain of the N-methyl-D-aspartate receptor., Han X., J Neurochem. December 1, 2008; 107 (6): 1566-77.


Differential effect of high pressure on NMDA receptor currents in Xenopus laevis oocytes., Mor A., Diving Hyperb Med. December 1, 2008; 38 (4): 194-6.


Anesthetic-like modulation of receptor function by surfactants: a test of the interfacial theory of anesthesia., Yang L., Anesth Analg. September 1, 2008; 107 (3): 868-74.


Cleft-type cyclophanes confer neuroprotection against excitatory neurotoxicity in vitro and in vivo through inhibition of NMDA receptors., Masuko T., Neuropharmacology. September 1, 2007; 53 (4): 515-23.


Molecular and functional studies of tilapia (Oreochromis mossambicus) NMDA receptor NR1 subunits., Tzeng DW., Comp Biochem Physiol B Biochem Mol Biol. March 1, 2007; 146 (3): 402-11.


Cyclophane and acyclic cyclophane: novel channel blockers of N-methyl-D-aspartate receptor., Masuko T., Neurochem Int. January 1, 2007; 50 (2): 443-9.


Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission., Frizelle PA., Mol Pharmacol. September 1, 2006; 70 (3): 1022-32.


RNA interference of Xenopus NMDAR NR1 in vitro and in vivo., Miskevich F., J Neurosci Methods. April 15, 2006; 152 (1-2): 65-73.


Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis., Hansen KB., Mol Pharmacol. December 1, 2005; 68 (6): 1510-23.


Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids., Conti P., J Med Chem. October 6, 2005; 48 (20): 6315-25.


Pharmacological implications of two distinct mechanisms of interaction of memantine with N-methyl-D-aspartate-gated channels., Chen HS., J Pharmacol Exp Ther. September 1, 2005; 314 (3): 961-71.


The NR3B subunit does not alter the anesthetic sensitivities of recombinant N-methyl-D-aspartate receptors., Yamakura T., Anesth Analg. June 1, 2005; 100 (6): 1687-1692.


Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes., Zuo Z., J Exp Biol. June 1, 2005; 208 (Pt 11): 2063-70.


Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling., Chen PE., Mol Pharmacol. May 1, 2005; 67 (5): 1470-84.


Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits., Chandra T., Neuroscience. January 1, 2005; 134 (1): 145-53.


Monoamines directly inhibit N-methyl-D-aspartate receptors expressed in Xenopus oocytes in a voltage-dependent manner., Masuko T., Neurosci Lett. November 16, 2004; 371 (1): 30-3.


Differential modulation of NR1-NR2A and NR1-NR2B subtypes of NMDA receptor by PDZ domain-containing proteins., Iwamoto T., J Neurochem. April 1, 2004; 89 (1): 100-8.


Functional analysis of Caenorhabditis elegans glutamate receptor subunits by domain transplantation., Strutz-Seebohm N., J Biol Chem. November 7, 2003; 278 (45): 44691-701.


Dynorphin A inhibits NMDA receptors through a pH-dependent mechanism., Kanemitsu Y., Mol Cell Neurosci. November 1, 2003; 24 (3): 525-37.


Structural model of the N-methyl-D-aspartate receptor glycine site probed by site-directed chemical coupling., Foucaud B., J Biol Chem. June 27, 2003; 278 (26): 24011-7.


Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids., Malayev A., Br J Pharmacol. February 1, 2002; 135 (4): 901-9.


The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801., Rammes G., Neuropharmacology. May 1, 2001; 40 (6): 749-60.


Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes., Cruz SL., Br J Pharmacol. December 1, 2000; 131 (7): 1303-8.


Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors., Low CM., Proc Natl Acad Sci U S A. September 26, 2000; 97 (20): 11062-7.


NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A., Goebel DJ., Brain Res Mol Brain Res. June 8, 1999; 69 (2): 164-70.


Differentiation of glycine antagonist sites of N-methyl-D-aspartate receptor subtypes. Preferential interaction of CGP 61594 with NR1/2B receptors., Honer M., J Biol Chem. May 1, 1998; 273 (18): 11158-63.


Xenopus oocytes express a unitary glutamate receptor endogenously., Soloviev MM., J Mol Biol. October 17, 1997; 273 (1): 14-8.


N1-dansyl-spermine and N1-(n-octanesulfonyl)-spermine, novel glutamate receptor antagonists: block and permeation of N-methyl-D-aspartate receptors., Chao J., Mol Pharmacol. May 1, 1997; 51 (5): 861-71.


Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol., Ilyin VI., Mol Pharmacol. December 1, 1996; 50 (6): 1541-50.


Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Structural basis for channel blocking and binding of argiotoxin636., Raditsch M., Eur J Biochem. September 1, 1996; 240 (2): 416-26.


Use of subunit-specific antisense oligodeoxynucleotides to define developmental changes in the properties of N-methyl-D-aspartate receptors., Zhong J., Mol Pharmacol. September 1, 1996; 50 (3): 631-8.


Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain., Sucher NJ., J Neurosci. October 1, 1995; 15 (10): 6509-20.


Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines., Traynelis SF., Science. May 12, 1995; 268 (5212): 873-6.


Recombinant human NMDA homomeric NR1 receptors expressed in mammalian cells form a high-affinity glycine antagonist binding site., Grimwood S., J Neurochem. February 1, 1995; 64 (2): 525-30.


Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition., Zhang L., Proc Natl Acad Sci U S A. November 8, 1994; 91 (23): 10883-7.

???pagination.result.page??? 1 2 ???pagination.result.next???