Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (7318) Expression Attributions Wiki
XB-ANAT-489

Papers associated with trunk (and slc5a1.2)

Limit to papers also referencing gene:
Show all trunk papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


Na+-dependent intestinal glucose absorption mechanisms and its luminal Na+ homeostasis across metamorphosis from tadpoles to frogs., Ishizuka N., Am J Physiol Regul Integr Comp Physiol. May 1, 2023; 324 (5): R645-R655.              


The inhibition of intestinal glucose absorption by oat-derived avenanthramides., Zhouyao H., J Food Biochem. October 1, 2022; 46 (10): e14324.


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome., Mann N., J Am Soc Nephrol. March 1, 2021; 32 (3): 580-596.    


The Molecular Basis of Glucose Galactose Malabsorption in a Large Swedish Pedigree., Lostao MP., Function (Oxf). January 1, 2021; 2 (5): zqab040.                    


Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins., Ni D., FASEB J. August 1, 2020; 34 (8): 9995-10010.


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                                


Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase., Chintalapati C., Mol Pharmacol. November 1, 2016; 90 (5): 508-521.


Structural and functional significance of water permeation through cotransporters., Zeuthen T., Proc Natl Acad Sci U S A. November 1, 2016; 113 (44): E6887-E6894.


Phosphorylation of RS1 (RSC1A1) Steers Inhibition of Different Exocytotic Pathways for Glucose Transporter SGLT1 and Nucleoside Transporter CNT1, and an RS1-Derived Peptide Inhibits Glucose Absorption., Veyhl-Wichmann M., Mol Pharmacol. January 1, 2016; 89 (1): 118-32.


Alternative channels for urea in the inner medulla of the rat kidney., Nawata CM., Am J Physiol Renal Physiol. December 1, 2015; 309 (11): F916-24.


Distinct action of the α-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion., Lee EY., J Endocrinol. March 1, 2015; 224 (3): 205-14.            


SPAK-sensitive regulation of glucose transporter SGLT1., Elvira B., J Membr Biol. November 1, 2014; 247 (11): 1191-7.


Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans., Schulze C., Mol Nutr Food Res. September 1, 2014; 58 (9): 1795-808.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


Up-regulation of Na(+)-coupled glucose transporter SGLT1 by caveolin-1., Elvira B., Biochim Biophys Acta. November 1, 2013; 1828 (11): 2394-8.


Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase., Segerdell E., J Biomed Semantics. October 18, 2013; 4 (1): 31.      


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


A perchlorate sensitive iodide transporter in frogs., Carr DL., Gen Comp Endocrinol. March 1, 2008; 156 (1): 9-14.      


Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis., Bracken CM., Dev Dyn. January 1, 2008; 237 (1): 132-44.          


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine., Aouameur R., Am J Physiol Gastrointest Liver Physiol. December 1, 2007; 293 (6): G1300-7.


Tripeptides of RS1 (RSC1A1) inhibit a monosaccharide-dependent exocytotic pathway of Na+-D-glucose cotransporter SGLT1 with high affinity., Vernaleken A., J Biol Chem. September 28, 2007; 282 (39): 28501-13.


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution., Althoff T., Am J Physiol Regul Integr Comp Physiol. June 1, 2007; 292 (6): R2391-9.


Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes., Blasco T., Am J Physiol Renal Physiol. October 1, 2003; 285 (4): F799-810.


A glucose sensor hiding in a family of transporters., Diez-Sampedro A., Proc Natl Acad Sci U S A. September 30, 2003; 100 (20): 11753-8.


Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney., Horiba N., J Biol Chem. April 25, 2003; 278 (17): 14669-76.


Polyphenol-induced inhibition of the response of na(+)/glucose cotransporter expressed in Xenopus oocytes., Hossain SJ., J Agric Food Chem. August 28, 2002; 50 (18): 5215-9.


Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and Glucose., Song J., J Biol Chem. May 3, 2002; 277 (18): 15252-60.


Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney., Eid SR., Int J Dev Biol. January 1, 2002; 46 (1): 177-84.      


Expression of the Na+/glucose co-transporter (SGLT1) in the intestine of domestic and wild ruminants., Wood IS., Pflugers Arch. November 1, 2000; 441 (1): 155-62.


Effect of benzodiazepines on the epithelial and neuronal high-affinity glutamate transporter EAAC1., Palmada M., J Neurochem. December 1, 1999; 73 (6): 2389-96.


Functional expression of tagged human Na+-glucose cotransporter in Xenopus laevis oocytes., Bissonnette P., J Physiol. October 15, 1999; 520 Pt 2 359-71.


Cloning and functional expression of an SGLT-1-like protein from the Xenopus laevis intestine., Nagata K., Am J Physiol. May 1, 1999; 276 (5): G1251-9.


Cloning and characterization of the transport modifier RS1 from rabbit which was previously assumed to be specific for Na+-D-glucose cotransport., Reinhardt J., Biochim Biophys Acta. February 4, 1999; 1417 (1): 131-43.


Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid., Rumsey SC., J Biol Chem. July 25, 1997; 272 (30): 18982-9.


Regulation of Na+/glucose cotransporters., Wright EM., J Exp Biol. January 1, 1997; 200 (Pt 2): 287-93.


The human gene of a protein that modifies Na(+)-D-glucose co-transport., Lambotte S., DNA Cell Biol. September 1, 1996; 15 (9): 769-77.


Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter., Kanai Y., J Biol Chem. July 14, 1995; 270 (28): 16561-8.


The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression., Lee WS., J Biol Chem. April 22, 1994; 269 (16): 12032-9.


Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter., Veyhl M., J Biol Chem. November 25, 1993; 268 (33): 25041-53.


[30 years' work on congenital glucose and galactose malabsorption: from phenotype to genotype]., Desjeux JF., Ann Gastroenterol Hepatol (Paris). October 1, 1993; 29 (5): 263-6; discussion 266-8.


[Thirty years of research on congenital glucose and galactose malabsorption: from phenotype to genotype]., Desjeux JF., Bull Acad Natl Med. January 1, 1993; 177 (1): 125-31; discussion 132-5.


Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter., Wells RG., Am J Physiol. September 1, 1992; 263 (3 Pt 2): F459-65.

???pagination.result.page??? 1 2 ???pagination.result.next???