Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3672) Expression Attributions Wiki
XB-ANAT-490

Papers associated with tail (and kcnq1)

Limit to papers also referencing gene:
Show all tail papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Functional Characterization of a Spectrum of Novel Romano-Ward Syndrome KCNQ1 Variants., Rinné S., Int J Mol Sci. January 10, 2023; 24 (2):                       


Optimized tight binding between the S1 segment and KCNE3 is required for the constitutively open nature of the KCNQ1-KCNE3 channel complex., Kasuya G., Elife. November 4, 2022; 11               


Distinctive mechanisms of epilepsy-causing mutants discovered by measuring S4 movement in KCNQ2 channels., Edmond MA., Elife. June 1, 2022; 11                           


Pharmacological rescue of specific long QT variants of KCNQ1/KCNE1 channels., Zou X., Front Physiol. January 1, 2022; 13 902224.                      


Identification of PUFA interaction sites on the cardiac potassium channel KCNQ1., Yazdi S., J Gen Physiol. June 7, 2021; 153 (6):


Molecular Mechanism of Autosomal Recessive Long QT-Syndrome 1 without Deafness., Oertli A., Int J Mol Sci. January 23, 2021; 22 (3):             


Familial neonatal seizures caused by the Kv7.3 selectivity filter mutation T313I., Maghera J., Epilepsia Open. December 1, 2020; 5 (4): 562-573.          


Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state., Taylor KC., Elife. February 25, 2020; 9                                     


ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling., Hou P., Elife. July 22, 2019; 8                     


In silico re-engineering of a neurotransmitter to activate KCNQ potassium channels in an isoform-specific manner., Manville RW., Commun Biol. January 1, 2019; 2 401.                    


Deconstruction of an African folk medicine uncovers a novel molecular strategy for therapeutic potassium channel activation., De Silva AM., Sci Adv. November 14, 2018; 4 (11): eaav0824.            


Ancient and modern anticonvulsants act synergistically in a KCNQ potassium channel binding pocket., Manville RW., Nat Commun. September 21, 2018; 9 (1): 3845.                  


Direct neurotransmitter activation of voltage-gated potassium channels., Manville RW., Nat Commun. May 10, 2018; 9 (1): 1847.            


A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity., Liu Z., Sci Rep. January 17, 2018; 8 (1): 1004.                


Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening., Hou P., Nat Commun. November 23, 2017; 8 (1): 1730.                            


Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome., Adams DS., J Physiol. June 15, 2016; 594 (12): 3245-70.                              


High incidence of functional ion-channel abnormalities in a consecutive Long QT cohort with novel missense genetic variants of unknown significance., Steffensen AB., Sci Rep. January 12, 2015; 5 10009.              


An Epithelial Ca2+-Sensor Protein is an Alternative to Calmodulin to Compose Functional KCNQ1 Channels., Inanobe A., Cell Physiol Biochem. January 1, 2015; 36 (5): 1847-61.


Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites., Choi SH., Mol Cells. September 1, 2014; 37 (9): 656-63.                


Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel., Zaydman MA., Elife. March 12, 2014; 3 e03606.                        


Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K(+) and KCNQ1 K(+) channel currents., Choi SH., J Ginseng Res. July 1, 2013; 37 (3): 324-31.          


Rab GTPases are required for early orientation of the left-right axis in Xenopus., Vandenberg LN., Mech Dev. January 1, 2013; 130 (4-5): 254-71.                      


Impaired ion channel function related to a common KCNQ1 mutation - implications for risk stratification in long QT syndrome 1., Aidery P., Gene. December 10, 2012; 511 (1): 26-33.        


KCNQ1 subdomains involved in KCNE modulation revealed by an invertebrate KCNQ1 orthologue., Nakajo K., J Gen Physiol. November 1, 2011; 138 (5): 521-35.                        


Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state., Larsen AP., Biophys J. August 17, 2011; 101 (4): 818-27.


Cell volume and membrane stretch independently control K+ channel activity., Hammami S., J Physiol. May 15, 2009; 587 (Pt 10): 2225-31.


Discovery of a novel activator of KCNQ1-KCNE1 K channel complexes., Mruk K., PLoS One. January 1, 2009; 4 (1): e4236.          


Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  


Second coiled-coil domain of KCNQ channel controls current expression and subfamily specific heteromultimerization by salt bridge networks., Nakajo K., J Physiol. June 15, 2008; 586 (12): 2827-40.


S1 constrains S4 in the voltage sensor domain of Kv7.1 K+ channels., Haitin Y., PLoS One. April 9, 2008; 3 (4): e1935.                  


KCNE1 constrains the voltage sensor of Kv7.1 K+ channels., Shamgar L., PLoS One. April 9, 2008; 3 (4): e1943.                    


KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels., Rocheleau JM., J Gen Physiol. January 1, 2008; 131 (1): 59-68.        


The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes., Panaghie G., J Gen Physiol. February 1, 2007; 129 (2): 121-33.                      


Secondary structure of a KCNE cytoplasmic domain., Rocheleau JM., J Gen Physiol. December 1, 2006; 128 (6): 721-9.          


KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin., Ghosh S., Circ Res. April 28, 2006; 98 (8): 1048-54.


KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels., Gage SD., J Gen Physiol. December 1, 2004; 124 (6): 759-71.                  


Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif., Jespersen T., J Cell Sci. September 1, 2004; 117 (Pt 19): 4517-26.


External barium affects the gating of KCNQ1 potassium channels and produces a pore block via two discrete sites., Gibor G., J Gen Physiol. July 1, 2004; 124 (1): 83-102.                                


Clinical and electrophysiological characterization of a novel mutation (F193L) in the KCNQ1 gene associated with long QT syndrome., Yamaguchi M., Clin Sci (Lond). April 1, 2003; 104 (4): 377-82.


The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell., Kerst G., J Membr Biol. March 15, 2002; 186 (2): 89-100.


Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels., Pusch M., Biophys J. January 1, 2000; 78 (1): 211-26.

???pagination.result.page??? 1