Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3316) Expression Attributions Wiki
XB-ANAT-492

Papers associated with surface structure (and pomc)

Limit to papers also referencing gene:
Show all surface structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles., Paul B., Gen Comp Endocrinol. September 15, 2022; 326 114072.      


Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis., Tai X., Front Endocrinol (Lausanne). January 1, 2022; 13 892407.              


Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Plasticity for colour adaptation in vertebrates explained by the evolution of the genes pomc, pmch and pmchl., Bertolesi GE., Pigment Cell Melanoma Res. July 1, 2019; 32 (4): 510-527.  


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. July 1, 2017; 30 (4): 413-423.


The melanocyte photosensory system in the human skin., Iyengar B., Springerplus. April 12, 2013; 2 (1): 158.                


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


The origins and evolution of vertebrate metamorphosis., Laudet V., Curr Biol. September 27, 2011; 21 (18): R726-37.            


ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells., Kuribara M., Endocrinology. June 1, 2011; 152 (6): 2321-9.


Plasticity of melanotrope cell regulations in Xenopus laevis., Roubos EW., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.    


BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression., Kuribara M., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.        


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell., Kidane AH., Endocrinology. August 1, 2008; 149 (8): 4177-82.


Actions of PACAP and VIP on melanotrope cells of Xenopus laevis., Kidane AH., Peptides. September 1, 2007; 28 (9): 1790-6.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.


Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides., Boorse GC., Gen Comp Endocrinol. March 1, 2006; 146 (1): 9-18.      


Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution., Boorse GC., Endocrinology. November 1, 2005; 146 (11): 4851-60.


Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.


A cell-specific transgenic approach in Xenopus reveals the importance of a functional p24 system for a secretory cell., Bouw G., Mol Biol Cell. March 1, 2004; 15 (3): 1244-53.


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Characterization and functional expression of cDNAs encoding thyrotropin-releasing hormone receptor from Xenopus laevis., Bidaud I., Eur J Biochem. September 1, 2002; 269 (18): 4566-76.


Multiple control and dynamic response of the Xenopus melanotrope cell., Kolk SM., Comp Biochem Physiol B Biochem Mol Biol. May 1, 2002; 132 (1): 257-68.


Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis., Kramer BM., Endocrinology. April 1, 2002; 143 (4): 1337-45.


Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation., Dotman CH., J Endocrinol. November 1, 1998; 159 (2): 281-6.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis., Ubink R., Neuroendocrinology. June 1, 1997; 65 (6): 413-22.


The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis., Brown DD., Proc Natl Acad Sci U S A. March 5, 1996; 93 (5): 1924-9.  


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians., Stenzel-Poore MP., Mol Endocrinol. October 1, 1992; 6 (10): 1716-24.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis., Deen PM., Mol Biol Evol. May 1, 1992; 9 (3): 483-94.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


Immunohistochemical localization of beta-endorphin-like material in the urodele and anuran amphibian tissues., Vethamany-Globus S., Gen Comp Endocrinol. August 1, 1989; 75 (2): 271-9.      


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Further studies on the melanophores of periodic albino mutant of Xenopus laevis., Fukuzawa T., J Embryol Exp Morphol. February 1, 1986; 91 65-78.


Characterization of alpha-MSH-induced changes in the phosphorylation of a 53 kDa protein in Xenopus melanophores., de Graan PN., Mol Cell Endocrinol. September 1, 1985; 42 (2): 127-33.


[Nle4, D-Phe7]-alpha-MSH: a superpotent melanotropin with prolonged action on vertebrate chromatophores., Hadley ME., Comp Biochem Physiol A Comp Physiol. January 1, 1985; 81 (1): 1-6.


Calcium sites in MSH stimulation of xenopus melanophores: studies with photoreactive alpha-MSH., de Graan PN., Mol Cell Endocrinol. May 1, 1982; 26 (3): 327-9.


Calcium requirement for alpha-MSH action on tail-fin melanophores of xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. May 1, 1982; 26 (3): 315-26.


Biosynthesis, processing, and control of release of melanotropic peptides in the neurointermediate lobe of Xenopus laevis., Loh YP., J Gen Physiol. July 1, 1977; 70 (1): 37-58.

???pagination.result.page??? 1