Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3921) Expression Attributions Wiki
XB-ANAT-50

Papers associated with mesoderm (and foxa4)

Limit to papers also referencing gene:
Show all mesoderm papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment., Satou-Kobayashi Y., Sci Rep. July 15, 2021; 11 (1): 14537.          


RARγ is required for mesodermal gene expression prior to gastrulation in Xenopus., Janesick A., Development. September 17, 2018; 145 (18):                           


Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition., Wagner G., PLoS Genet. May 12, 2017; 13 (5): e1006757.                                    


Specification of anteroposterior axis by combinatorial signaling during Xenopus development., Carron C., Wiley Interdiscip Rev Dev Biol. January 1, 2016; 5 (2): 150-68.            


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL., Genesis. May 1, 2015; 53 (5): 308-20.          


E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation., Wills AE., Dev Cell. February 9, 2015; 32 (3): 345-57.                  


Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation., Rohani N., PLoS Biol. September 23, 2014; 12 (9): e1001955.              


Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification., Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.        


Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns., Zheng Z., BMC Syst Biol. January 8, 2014; 8 3.                  


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo., Ninomiya H., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.              


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Transient expression of Ngn3 in Xenopus endoderm promotes early and ectopic development of pancreatic beta and delta cells., Oropeza D., Genesis. March 1, 2012; 50 (3): 271-85.                        


A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling., Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.                              


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm., Kurokawa D., Dev Biol. June 1, 2010; 342 (1): 110-20.                


Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora., Yamada A., Dev Biol. March 1, 2010; 339 (1): 212-22.    


Early molecular effects of ethanol during vertebrate embryogenesis., Yelin R., Differentiation. June 1, 2007; 75 (5): 393-403.                    


Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands., Batut J., Dev Cell. February 1, 2007; 12 (2): 261-74.  


beta-Catenin controls cell sorting at the notochord-somite boundary independently of cadherin-mediated adhesion., Reintsch WE., J Cell Biol. August 15, 2005; 170 (4): 675-86.              


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


The Notch-target gene hairy2a impedes the involution of notochordal cells by promoting floor plate fates in Xenopus embryos., López SL., Development. March 1, 2005; 132 (5): 1035-46.              


The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos., Callery EM., Dev Biol. February 15, 2005; 278 (2): 542-59.                              


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Inhibition of mesodermal fate by Xenopus HNF3beta/FoxA2., Suri C., Dev Biol. January 1, 2004; 265 (1): 90-104.              


Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions., Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.                    


Notch activates sonic hedgehog and both are involved in the specification of dorsal midline cell-fates in Xenopus., López SL., Development. May 1, 2003; 130 (10): 2225-38.        


A novel Xenopus Smad-interacting forkhead transcription factor (XFast-3) cooperates with XFast-1 in regulating gastrulation movements., Howell M., Development. June 1, 2002; 129 (12): 2823-34.    


Antisense inhibition of Xbrachyury impairs mesoderm formation in Xenopus embryos., Giovannini N., Dev Growth Differ. April 1, 2002; 44 (2): 147-59.            


Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae., Yasuo H., Development. October 1, 2001; 128 (19): 3783-93.      


Determinants of T box protein specificity., Conlon FL., Development. October 1, 2001; 128 (19): 3749-58.              


Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm., El-Hodiri H., Int J Dev Biol. January 1, 2001; 45 (1): 265-71.        


A screen for targets of the Xenopus T-box gene Xbra., Saka Y., Mech Dev. May 1, 2000; 93 (1-2): 27-39.                  


Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling., Kusch T., Development. September 1, 1999; 126 (18): 3991-4003.


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos., Howell M., EMBO J. December 15, 1997; 16 (24): 7411-21.


Markers of vertebrate mesoderm induction., Stennard F., Curr Opin Genet Dev. October 1, 1997; 7 (5): 620-7.


The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds., Armes NA., Development. October 1, 1997; 124 (19): 3797-804.                


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders., Whiteley M., Dev Genet. January 1, 1997; 20 (2): 145-51.


Regulated expression of the retinoblastoma gene product by fibroblast growth factor but not by activin during mesoderm induction in Xenopus., Greenland J., Dev Genes Evol. December 1, 1996; 206 (5): 333-6.


Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm., Conlon FL., Development. August 1, 1996; 122 (8): 2427-35.                    


Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos., Jones CM., Development. May 1, 1996; 122 (5): 1545-54.                


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK., Dev Biol. February 25, 1996; 174 (1): 174-8.  


A fork head related multigene family is transcribed in Xenopus laevis embryos., Lef J., Int J Dev Biol. February 1, 1996; 40 (1): 245-53.  


Bone morphogenetic protein 2 in the early development of Xenopus laevis., Clement JH., Mech Dev. August 1, 1995; 52 (2-3): 357-70.            

???pagination.result.page??? 1 2 ???pagination.result.next???