Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8703) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and rpe)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Rod photoreceptor disc shedding in eye cups: relationship to bicarbonate and amino acids., Besharse JC., Exp Eye Res. April 1, 1983; 36 (4): 567-79.


Membrane skeleton protein 4.1 in developing Xenopus: expression in postmitotic cells of the retina., Spencer M., Dev Biol. June 1, 1990; 139 (2): 279-91.          


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Xenopus Pax-6 and retinal development., Hirsch N., J Neurobiol. January 1, 1997; 32 (1): 45-61.            


Basic fibroblast growth factor (FGF-2) induced transdifferentiation of retinal pigment epithelium: generation of retinal neurons and glia., Sakaguchi DS., Dev Dyn. August 1, 1997; 209 (4): 387-98.          


Critical role of TrkB and brain-derived neurotrophic factor in the differentiation and survival of retinal pigment epithelium., Liu ZZ., J Neurosci. November 15, 1997; 17 (22): 8749-55.          


Melanopsin: An opsin in melanophores, brain, and eye., Provencio I., Proc Natl Acad Sci U S A. January 6, 1998; 95 (1): 340-5.        


Fourth module of Xenopus interphotoreceptor retinoid-binding protein: activity in retinoid transfer between the retinal pigment epithelium and rod photoreceptors., Gonzalez-Fernandez F., Curr Eye Res. December 1, 1998; 17 (12): 1150-7.


Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium., Chang JT., Hum Mol Genet. April 1, 1999; 8 (4): 575-83.


Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus., Mani SS., J Biol Chem. May 28, 1999; 274 (22): 15590-7.              


Lactose promotes organized photoreceptor outer segment assembly and preserves expression of photoreceptor proteins in retinal degeneration., Jablonski MM., Mol Vis. August 11, 1999; 5 16.


Pax6 induces ectopic eyes in a vertebrate., Chow RL., Development. October 1, 1999; 126 (19): 4213-22.              


The Xenopus clock gene is constitutively expressed in retinal photoreceptors., Zhu H., Brain Res Mol Brain Res. February 22, 2000; 75 (2): 303-8.        


Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos., Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.            


Closer look at lactose-mediated support of retinal morphogenesis., Jablonski MM., Anat Rec. June 1, 2000; 259 (2): 205-14.


Differential regulation of two period genes in the Xenopus eye., Zhuang M., Brain Res Mol Brain Res. October 20, 2000; 82 (1-2): 52-64.


Multiple cell targets for melatonin action in Xenopus laevis retina: distribution of melatonin receptor immunoreactivity., Wiechmann AF., Vis Neurosci. January 1, 2001; 18 (5): 695-702.


Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H., Mech Dev. March 1, 2001; 101 (1-2): 271-7.                                                                        


Xpitx3: a member of the Rieg/Pitx gene family expressed during pituitary and lens formation in Xenopus laevis., Pommereit D., Mech Dev. April 1, 2001; 102 (1-2): 255-7.                


Melatonin receptor RNA is expressed in photoreceptors and displays a diurnal rhythm in Xenopus retina., Wiechmann AF., Brain Res Mol Brain Res. July 13, 2001; 91 (1-2): 104-11.      


Nrl and Sp nuclear proteins mediate transcription of rod-specific cGMP-phosphodiesterase beta-subunit gene: involvement of multiple response elements., Lerner LE., J Biol Chem. September 14, 2001; 276 (37): 34999-5007.        


Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells., Wiechmann AF., Exp Eye Res. November 1, 2001; 73 (5): 617-23.        


Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate., Kenyon KL., Dev Biol. December 1, 2001; 240 (1): 77-91.          


The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus., Richard-Parpaillon L., Dev Biol. April 15, 2002; 244 (2): 407-17.                    


Expression patterns of focal adhesion associated proteins in the developing retina., Li M., Dev Dyn. December 1, 2002; 225 (4): 544-53.                


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.              


Eye regeneration at the molecular age., Del Rio-Tsonis K., Dev Dyn. February 1, 2003; 226 (2): 211-24.            


A novel function for Hedgehog signalling in retinal pigment epithelium differentiation., Perron M., Development. April 1, 2003; 130 (8): 1565-77.                                  


The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa., Loewen CJ., Mol Biol Cell. August 1, 2003; 14 (8): 3400-13.                  


Internalization of interphotoreceptor retinoid-binding protein by the Xenopus retinal pigment epithelium., Cunningham LL., J Comp Neurol. November 17, 2003; 466 (3): 331-42.


Regulation of vertebrate eye development by Rx genes., Bailey TJ., Int J Dev Biol. January 1, 2004; 48 (8-9): 761-70.    


Isolation and developmental expression of Mitf in Xenopus laevis., Kumasaka M., Dev Dyn. May 1, 2004; 230 (1): 107-13.    


Contribution of Müller cells toward the regulation of photoreceptor outer segment assembly., Wang X., Neuron Glia Biol. August 1, 2004; 1 (3): 291-6.


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors., Lin-Jones J., J Cell Sci. November 15, 2004; 117 (Pt 24): 5825-34.                


Contribution of Müller cells toward the regulation of photoreceptor outer segment assembly., Wang X., Neuron Glia Biol. January 1, 2005; 1 1-6.


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor., Azuma N., Hum Mol Genet. April 15, 2005; 14 (8): 1059-68.


Pigmented epithelium to retinal transdifferentiation and Pax6 expression in larval Xenopus laevis., Arresta E., J Exp Zool A Comp Exp Biol. November 1, 2005; 303 (11): 958-67.


Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf., Kumasaka M., Dev Dyn. November 1, 2005; 234 (3): 523-34.      


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Eye and neural defects associated with loss of GDF6., Hanel ML., BMC Dev Biol. June 6, 2006; 6 43.          


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Shroom2 (APXL) regulates melanosome biogenesis and localization in the retinal pigment epithelium., Fairbank PD., Development. October 1, 2006; 133 (20): 4109-18.                    


Xenopus cadherin-6 regulates growth and epithelial development of the retina., Ruan G., Mech Dev. December 1, 2006; 123 (12): 881-92.        


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D., Genesis. January 1, 2007; 45 (1): 1-10.            


Expression of Bmp ligands and receptors in the developing Xenopus retina., Hocking JC., Int J Dev Biol. January 1, 2007; 51 (2): 161-5.        


Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation., Araki M., Dev Growth Differ. February 1, 2007; 49 (2): 109-20.                


Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina., Yoshii C., Dev Biol. March 1, 2007; 303 (1): 45-56.                    

???pagination.result.page??? 1 2 3 ???pagination.result.next???