Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (8570) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and sox2)

Limit to papers also referencing gene:
Show all embryonic structure papers
Results 1 - 50 of 346 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development., Tavares ALP., Development. September 1, 2021; 148 (17):                       


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.                        


Establishing embryonic territories in the context of Wnt signaling., Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.      


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. January 1, 2021; 10 (2):                 


Role of TrkA signaling during tadpole tail regeneration and early embryonic development in Xenopus laevis., Iimura A., Genes Cells. February 1, 2020; 25 (2): 86-99.                


Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction., Pegge J., Dev Biol. January 1, 2020; 460 (2): 108-114.        


Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A., Dev Biol. January 1, 2020; 462 (2): 165-179.                    


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. January 1, 2020; 9                                                                                           


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. January 1, 2019; 155 48-59.                


Broad applicability of a streamlined ethyl cinnamate-based clearing procedure., Masselink W., Development. January 1, 2019; 146 (3):         


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. January 1, 2019; 446 (1): 68-79.                      


Transcriptome analysis of regeneration during Xenopus laevis experimental twinning., Sosa EA., Int J Dev Biol. January 1, 2019; 63 (6-7): 301-309.


BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers., Kuznetsov JN., Sci Adv. January 1, 2019; 5 (9): eaax1738.        


Trpc1 as the Missing Link Between the Bmp and Ca2+ Signalling Pathways During Neural Specification in Amphibians., Néant I., Sci Rep. January 1, 2019; 9 (1): 16049.                                    


Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation., Kim E., Dev Cell. January 1, 2019; 51 (6): 675-683.e4.          


Endosome-Mediated Epithelial Remodeling Downstream of Hedgehog-Gli Is Required for Tracheoesophageal Separation., Nasr T., Dev Cell. January 1, 2019; 51 (6): 665-674.e6.                  


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA., Dev Biol. January 1, 2018; 434 (1): 121-132.          


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. January 1, 2018; 145 (12):                                   


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. January 1, 2018; 8 (1): 11836.                      


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. January 1, 2018; 154 219-239.                      


Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis., Ding Y., Proc Natl Acad Sci U S A. January 1, 2018; 115 (39): E9135-E9144.                    


WDR5 regulates left-right patterning via chromatin-dependent and -independent functions., Kulkarni SS., Development. January 1, 2018; 145 (23):                 


A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure., Komiya Y., Sci Rep. November 15, 2017; 7 (1): 15623.                    


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 31, 2017; .


A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates., Plouhinec JL., PLoS Biol. October 1, 2017; 15 (10): e2004045.                                              


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis., Exner CRT., Dev Biol. May 1, 2017; 425 (1): 33-43.                                    


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing., Popov IK., Dev Biol. January 1, 2017; 426 (2): 429-441.                    


Noggin is required for first pharyngeal arch differentiation in the frog Xenopus tropicalis., Young JJ., Dev Biol. January 1, 2017; 426 (2): 245-254.                


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL., Dev Biol. January 1, 2017; 426 (2): 409-417.        


no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development., Nakayama T., Dev Biol. January 1, 2017; 426 (2): 472-486.                      


Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation., Balashova OA., Development. January 1, 2017; 144 (8): 1518-1530.                        


Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs., Stevens ML., Development. January 1, 2017; 144 (7): 1283-1295.                            


Dual roles of Akirin2 protein during Xenopus neural development., Liu X., J Biol Chem. January 1, 2017; 292 (14): 5676-5684.                            


Evo-engineering and the cellular and molecular origins of the vertebrate spinal cord., Steventon B., Dev Biol. January 1, 2017; 432 (1): 3-13.


Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome., Modrell MS., Elife. January 1, 2017; 6             


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. January 1, 2017; 292 (31): 12842-12859.        


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P., Elife. January 1, 2017; 6                               


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A., Dev Biol. January 1, 2017; 429 (1): 213-224.                    


Apolipoprotein C-I mediates Wnt/Ctnnb1 signaling during neural border formation and is required for neural crest development., Yokota C., Int J Dev Biol. January 1, 2017; 61 (6-7): 415-425.                      


ZC4H2 stabilizes Smads to enhance BMP signalling, which is involved in neural development in Xenopus., Ma P., Open Biol. January 1, 2017; 7 (8):                           


Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus., Hong CS., Genesis. January 1, 2017; 55 (12):                               


La-related protein 6 controls ciliated cell differentiation., Manojlovic Z., Cilia. January 1, 2017; 6 4.                


Autoregulation of retinal homeobox (rax) gene promoter activity through a highly conserved genomic element., Kelly LE., Genesis. November 1, 2016; 54 (11): 562-567.      


EphA7 modulates apical constriction of hindbrain neuroepithelium during neurulation in Xenopus., Wang X., Biochem Biophys Res Commun. October 28, 2016; 479 (4): 759-765.        


The E3 ubiquitin ligase Hace1 is required for early embryonic development in Xenopus laevis., Iimura A., BMC Dev Biol. September 21, 2016; 16 (1): 31.                    

Page(s): 1 2 3 4 5 6 7 Next