Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8703) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and irx1)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains., Marchak A., Dev Dyn. December 1, 2023; 252 (12): 1407-1427.                  


Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes., Neal SJ., J Exp Zool B Mol Dev Evol. October 13, 2023;             


Zmym4 is required for early cranial gene expression and craniofacial cartilage formation., Jourdeuil K., Front Cell Dev Biol. January 1, 2023; 11 1274788.          


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.                        


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A., Dev Biol. September 1, 2017; 429 (1): 213-224.                    


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center., Sena E., J Dev Biol. October 20, 2016; 4 (4):       


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S., Genesis. June 1, 2016; 54 (6): 334-49.                          


Evidence for an amphibian sixth digit., Hayashi S., Zoological Lett. June 15, 2015; 1 17.                  


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S., Front Neuroanat. February 3, 2015; 9 107.                                                    


The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog., Juraver-Geslin HA., Dev Biol. December 1, 2014; 396 (1): 107-20.                    


Setting appropriate boundaries: fate, patterning and competence at the neural plate border., Groves AK., Dev Biol. May 1, 2014; 389 (1): 2-12.    


Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers., Plouhinec JL., Dev Biol. February 15, 2014; 386 (2): 461-72.                                            


Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes., Klein SL., PLoS One. April 4, 2013; 8 (4): e61845.                  


HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2., Heliot C., Development. February 1, 2013; 140 (4): 873-85.  


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


Over-expression of atf4 in Xenopus embryos interferes with neurogenesis and eye formation., Liu JT., Dongwuxue Yanjiu. October 1, 2011; 32 (5): 485-91.            


A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression., Terriente-Félix A., Dev Biol. February 15, 2011; 350 (2): 382-92.                  


The role of the visceral mesoderm in the development of the gastrointestinal tract., McLin VA., Gastroenterology. June 1, 2009; 136 (7): 2074-91.


The Xenopus Irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors Fezf and Arx., Rodríguez-Seguel E., Dev Biol. May 15, 2009; 329 (2): 258-68.                


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B., Dev Biol. May 1, 2009; 329 (1): 80-95.              


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways., Yan B., Dev Biol. May 1, 2007; 305 (1): 103-19.        


Xenopus paraxis homologue shows novel domains of expression., Carpio R., Dev Dyn. November 1, 2004; 231 (3): 609-13.        


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos., Glavic A., Development. January 1, 2004; 131 (2): 347-59.              


Xenopus Xlmo4 is a GATA cofactor during ventral mesoderm formation and regulates Ldb1 availability at the dorsal mesoderm and the neural plate., de la Calle-Mustienes E., Dev Biol. December 15, 2003; 264 (2): 564-81.


Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma., de la Calle-Mustienes E., Mech Dev. November 1, 2002; 119 (1): 69-80.              


Molecular cloning and characterization of dullard: a novel gene required for neural development., Satow R., Biochem Biophys Res Commun. July 5, 2002; 295 (1): 85-91.                  


The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation., Glavic A., Development. April 1, 2002; 129 (7): 1609-21.                  


The Xiro-repressed gene CoREST is expressed in Xenopus neural territories., de la Calle-Mustienes E., Mech Dev. January 1, 2002; 110 (1-2): 209-11.  


Xiro-1 controls mesoderm patterning by repressing bmp-4 expression in the Spemann organizer., Glavic A., Dev Dyn. November 1, 2001; 222 (3): 368-76.      


Neural induction takes a transcriptional twist., Bainter JJ., Dev Dyn. November 1, 2001; 222 (3): 315-27.  


The Iroquois family of genes: from body building to neural patterning., Cavodeassi F., Development. August 1, 2001; 128 (15): 2847-55.      


Irx1 and Irx2 expression in early lung development., Becker MB., Mech Dev. August 1, 2001; 106 (1-2): 155-8.


Expression of two novel mouse Iroquois homeobox genes during neurogenesis., Cohen DR., Mech Dev. March 1, 2000; 91 (1-2): 317-21.


Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand., Bruneau BG., Dev Biol. January 15, 2000; 217 (2): 266-77.  


Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.                      

???pagination.result.page??? 1