Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (8571) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and nodal1)

Limit to papers also referencing gene:
Show all embryonic structure papers
Results 1 - 50 of 327 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

Aquatic models of human ciliary diseases., Corkins ME., Genesis. January 1, 2021; 59 (1-2): e23410.          


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. January 1, 2021; 10 (2):                 


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. January 1, 2020; 9                                                                                           


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X., Genes (Basel). January 1, 2020; 11 (11):                   


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. January 1, 2019; 146 (9):                               


Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer., Blum M., Curr Opin Genet Dev. January 1, 2019; 56 8-14.      


Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling., Duncan AR., Dev Biol. January 1, 2019; 456 (1): 1-7.        


Role of dipeptidyl peptidase-4 as a potentiator of activin/nodal signaling pathway., Park DS., BMB Rep. December 1, 2018; 51 (12): 636-641.          


An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus., Vick P., iScience. April 27, 2018; 2 76-85.                                        


RAPGEF5 Regulates Nuclear Translocation of β-Catenin., Griffin JN., Dev Cell. January 1, 2018; 44 (2): 248-260.e4.                                                


A Conserved Role of the Unconventional Myosin 1d in Laterality Determination., Tingler M., Curr Biol. January 1, 2018; 28 (5): 810-816.e3.                


WDR5 regulates left-right patterning via chromatin-dependent and -independent functions., Kulkarni SS., Development. January 1, 2018; 145 (23):                 


Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left-Right Organizer in Xenopus., Sempou E., Front Physiol. January 1, 2018; 9 1705.              


HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner., Pai VP., Biol Open. October 15, 2017; 6 (10): 1445-1457.                              


Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition., Wagner G., PLoS Genet. May 1, 2017; 13 (5): e1006757.                                    


Leftward Flow Determines Laterality in Conjoined Twins., Tisler M., Curr Biol. February 20, 2017; 27 (4): 543-548.                


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. January 1, 2017; 426 (2): 176-187.                                  


Xenopus, an ideal model organism to study laterality in conjoined twins., Tisler M., Genesis. January 1, 2017; 55 (1-2):         


Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling., Han W., Sci Rep. January 1, 2017; 7 42590.                        


Stomach curvature is generated by left-right asymmetric gut morphogenesis., Davis A., Development. January 1, 2017; 144 (8): 1477-1483.                      


Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression., Hooker LN., Dev Dyn. January 1, 2017; 246 (9): 657-669.                    


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P., Elife. January 1, 2017; 6                               


Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis., Pitcairn E., Commun Integr Biol. January 1, 2017; 10 (3): e1309488.                            


Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish., Bisgrove BW., Elife. January 1, 2017; 6                 


Gtpbp2 is a positive regulator of Wnt signaling and maintains low levels of the Wnt negative regulator Axin., Gillis WQ., Cell Commun Signal. August 2, 2016; 14 (1): 15.              


Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors., Gazdag E., Development. April 15, 2016; 143 (8): 1340-50.                    


Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog., Davison A., Curr Biol. March 7, 2016; 26 (5): 654-60.            


Specification of anteroposterior axis by combinatorial signaling during Xenopus development., Carron C., Wiley Interdiscip Rev Dev Biol. March 1, 2016; 5 (2): 150-68.            


Xenopus as a model organism for birth defects-Congenital heart disease and heterotaxy., Duncan AR., Semin Cell Dev Biol. March 1, 2016; 51 73-9.    


c21orf59/kurly Controls Both Cilia Motility and Polarization., Jaffe KM., Cell Rep. March 1, 2016; 14 (8): 1841-9.                  


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L., Development. February 1, 2016; 143 (3): 492-503.                            


Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1., Liu C., Dev Biol. January 1, 2016; 409 (1): 26-38.                


FoxH1 mediates a Grg4 and Smad2 dependent transcriptional switch in Nodal signaling during Xenopus mesoderm development., Reid CD., Dev Biol. January 1, 2016; 414 (1): 34-44.                  


Zic2 mutation causes holoprosencephaly via disruption of NODAL signalling., Houtmeyers R., Hum Mol Genet. January 1, 2016; 25 (18): 3946-3959.


Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development., Tadjuidje E., Open Biol. January 1, 2016; 6 (8):             


Pou5f3.2-induced proliferative state of embryonic cells during gastrulation of Xenopus laevis embryo., Nishitani E., Dev Growth Differ. December 1, 2015; 57 (9): 591-600.              


Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning., Gao Y., Dev Dyn. October 1, 2015; 244 (10): 1328-46.                                    


JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis., Zhang X., J Biol Chem. August 14, 2015; 290 (33): 20273-83.                      


Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo., Katz Imberman S., FEBS J. August 1, 2015; 282 (15): 2930-47.


Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos., Sun G., J Biol Chem. July 10, 2015; 290 (28): 17239-49.                  


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity., Dorn T., Stem Cells. April 1, 2015; 33 (4): 1113-29.              


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation., Wills AE., Dev Cell. February 9, 2015; 32 (3): 345-57.                  


Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements., Kai M., PLoS One. January 1, 2015; 10 (1): e0115111.              


Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo., Li HY., Int J Dev Biol. January 1, 2015; 59 (10-12): 443-51.                          


Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/β-catenin signaling pathway., Amado NG., J Biol Chem. December 19, 2014; 289 (51): 35456-67.                  


Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT., Development. December 1, 2014; 141 (23): 4537-47.                                  


Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus., Gupta R., Dev Biol. November 1, 2014; 395 (1): 38-49.            


Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression., Nelson AC., BMC Biol. October 3, 2014; 12 81.            

Page(s): 1 2 3 4 5 6 7 Next