Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8703) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and hes4)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes., Neal SJ., J Exp Zool B Mol Dev Evol. October 13, 2023;             


The complete dorsal structure is formed from only the blastocoel roof of Xenopus blastula: insight into the gastrulation movement evolutionarily conserved among chordates., Sato Y., Dev Genes Evol. June 1, 2023; 233 (1): 1-12.                


Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        


Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis., Delhermite J., PLoS Genet. January 18, 2022; 18 (1): e1010012.                                                              


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. February 25, 2021; 10 (2):                 


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X., Genes (Basel). November 18, 2020; 11 (11):                   


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Spiral waves and vertebrate embryonic handedness., Durston AJ., J Biosci. June 1, 2018; 43 (2): 375-390.


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis., Shibata Y., Gen Comp Endocrinol. October 1, 2015; 222 11-9.                


YAP controls retinal stem cell DNA replication timing and genomic stability., Cabochette P., Elife. September 22, 2015; 4 e08488.                                    


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation., Love NK., Development. February 1, 2014; 141 (3): 697-706.                              


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


Brief report: Rx1 defines retinal precursor identity by repressing alternative fates through the activation of TLE2 and Hes4., Giannaccini M., Stem Cells. December 1, 2013; 31 (12): 2842-7.


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Microarray-based identification of Pitx3 targets during Xenopus embryogenesis., Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.                          


Early neural crest induction requires an initial inhibition of Wnt signals., Steventon B., Dev Biol. May 1, 2012; 365 (1): 196-207.              


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network., de Crozé N., Proc Natl Acad Sci U S A. January 4, 2011; 108 (1): 155-60.        


Activation of the K(ATP) channel by Mg-nucleotide interaction with SUR1., Proks P., J Gen Physiol. October 1, 2010; 136 (4): 389-405.                    


BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning., Sakano D., Dev Cell. March 16, 2010; 18 (3): 450-62.        


BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus., Wills AE., Dev Biol. January 15, 2010; 337 (2): 335-50.                  


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


Cell communication with the neural plate is required for induction of neural markers by BMP inhibition: evidence for homeogenetic induction and implications for Xenopus animal cap and chick explant assays., Linker C., Dev Biol. March 15, 2009; 327 (2): 478-86.      


Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus., Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.                        


Hairy2-Id3 interactions play an essential role in Xenopus neural crest progenitor specification., Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.                          


Tbx6, Thylacine1, and E47 synergistically activate bowline expression in Xenopus somitogenesis., Hitachi K., Dev Biol. January 15, 2008; 313 (2): 816-28.      


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


Two alloalleles of Xenopus laevis hairy2 gene--evolution of duplicated gene function from a developmental perspective., Murato Y., Dev Genes Evol. September 1, 2007; 217 (9): 665-73.


Bowline mediates association of the transcriptional corepressor XGrg-4 with Tbx6 during somitogenesis in Xenopus., Kondow A., Biochem Biophys Res Commun. August 10, 2007; 359 (4): 959-64.        


Xenopus cDNA microarray identification of genes with endodermal organ expression., Park EC., Dev Dyn. June 1, 2007; 236 (6): 1633-49.                    


Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state., Nagatomo K., Dev Dyn. June 1, 2007; 236 (6): 1475-83.          


Ledgerline, a novel Xenopus laevis gene, regulates differentiation of presomitic mesoderm during somitogenesis., Chan T., Zoolog Sci. August 1, 2006; 23 (8): 689-97.  


Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis., Peres JN., Mech Dev. April 1, 2006; 123 (4): 321-33.                          


Bowline, a novel protein localized to the presomitic mesoderm, interacts with Groucho/TLE in Xenopus., Kondow A., Int J Dev Biol. January 1, 2006; 50 (5): 473-9.          


Two modes of action by which Xenopus hairy2b establishes tissue demarcation in the Spemann-Mangold organizer., Murato Y., Int J Dev Biol. January 1, 2006; 50 (5): 463-71.


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis., Shibata M., Mech Dev. December 1, 2005; 122 (12): 1322-39.                    


Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer., Yamaguti M., Dev Dyn. September 1, 2005; 234 (1): 102-13.          


The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors., Lamar E., Development. August 1, 2005; 132 (16): 3619-30.                    


Six3 functions in anterior neural plate specification by promoting cell proliferation and inhibiting Bmp4 expression., Gestri G., Development. May 1, 2005; 132 (10): 2401-13.              

???pagination.result.page??? 1 2 ???pagination.result.next???