Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8703) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and vim)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain., Thompson AJ., Elife. January 15, 2019; 8                     


Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis., Jin L., Stem Cells. September 1, 2018; 36 (9): 1368-1379.                      


PAWS1 controls Wnt signalling through association with casein kinase 1α., Bozatzi P., EMBO Rep. April 1, 2018; 19 (4):                             


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus., Martinez-De Luna RI., Dev Biol. June 15, 2017; 426 (2): 219-235.                      


A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification., Rankin SA, Rankin SA., Cell Rep. June 28, 2016; 16 (1): 66-78.                                              


A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis., Gujral TS., Cell. November 6, 2014; 159 (4): 844-56.              


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P., Development. June 1, 2013; 140 (11): 2409-21.                                


In silico and in vivo identification of the intermediate filament vimentin that is downregulated downstream of Brachyury during Xenopus embryogenesis., Yamada A., Gene. January 10, 2012; 491 (2): 232-6.


pTransgenesis: a cross-species, modular transgenesis resource., Love NR., Development. December 1, 2011; 138 (24): 5451-8.              


Analyzing the function of a hox gene: an evolutionary approach., Michaut L., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.            


Role of Tbx2 in defining the territory of the pronephric nephron., Cho GS., Development. February 1, 2011; 138 (3): 465-74.                        


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


The POU homeobox protein Oct-1 regulates radial glia formation downstream of Notch signaling., Kiyota T., Dev Biol. March 15, 2008; 315 (2): 579-92.      


Ets-1 regulates radial glia formation during vertebrate embryogenesis., Kiyota T., Organogenesis. October 1, 2007; 3 (2): 93-101.          


Expression patterns of chick Musashi-1 in the developing nervous system., Wilson JM., Gene Expr Patterns. August 1, 2007; 7 (7): 817-25.            


The EGF-CFC family: novel epidermal growth factor-related proteins in development and cancer., Saloman DS., Endocr Relat Cancer. December 1, 2000; 7 (4): 199-226.


Fingerprinting taste buds: intermediate filaments and their implication for taste bud formation., Witt M., Philos Trans R Soc Lond B Biol Sci. September 29, 2000; 355 (1401): 1233-7.


Glial-defined rhombomere boundaries in developing Xenopus hindbrain., Yoshida M., J Comp Neurol. August 14, 2000; 424 (1): 47-57.              


Post-transcriptional regulation of Xwnt-8 expression is required for normal myogenesis during vertebrate embryonic development., Tian Q., Development. August 1, 1999; 126 (15): 3371-80.                  


Neural development in the marsupial frog Gastrotheca riobambae., Del Pino EM., Int J Dev Biol. July 1, 1998; 42 (5): 723-31.


A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule., Houston DW., Development. January 1, 1998; 125 (2): 171-80.                


Copurification of vimentin, energy metabolism enzymes, and a MER5 homolog with nucleoside diphosphate kinase. Identification of tissue-specific interactions., Otero AS., J Biol Chem. June 6, 1997; 272 (23): 14690-4.


A kinesin-like protein is required for germ plasm aggregation in Xenopus., Robb DL., Cell. November 29, 1996; 87 (5): 823-31.              


Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits., Kennedy ME., Neuropharmacology. January 1, 1996; 35 (7): 831-9.


Cloning of multiple forms of goldfish vimentin: differential expression in CNS., Glasgow E., J Neurochem. August 1, 1994; 63 (2): 470-81.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


Assembly and structure of calcium-induced thick vimentin filaments., Hofmann I., Eur J Cell Biol. December 1, 1991; 56 (2): 328-41.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Identification of vimentin and novel vimentin-related proteins in Xenopus oocytes and early embryos., Torpey NP., Development. December 1, 1990; 110 (4): 1185-95.            


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis., Tang P., Development. June 1, 1988; 103 (2): 279-87.              


Developmental expression of a neurofilament-M and two vimentin-like genes in Xenopus laevis., Sharpe CR., Development. June 1, 1988; 103 (2): 269-77.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus., Franz JK., Proc Natl Acad Sci U S A. October 1, 1983; 80 (20): 6254-8.          

???pagination.result.page??? 1