Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (8703) Expression Attributions Wiki
XB-ANAT-506

Papers associated with embryonic structure (and pam)

Limit to papers also referencing gene:
Show all embryonic structure papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders., Kaiyrzhanov R., Brain. April 4, 2024; 147 (4): 1436-1456.                            


Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution., Hossain N., Dev Growth Differ. October 1, 2023; 65 (8): 481-497.                  


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Identification and validation of candidate risk genes in endocytic vesicular trafficking associated with esophageal atresia and tracheoesophageal fistulas., Zhong G., HGG Adv. July 14, 2022; 3 (3): 100107.        


Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos., Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.                                


Protocadherin-1 is expressed in the notochord of mouse embryo but is dispensable for its formation., Fukunaga K., Biochem Biophys Rep. June 15, 2021; 27 101047.          


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):                             


CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis., Mao CZ., FASEB J. June 13, 2018; fj201800093.              


The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture., Takahashi C., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.                                      


Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate., Kremnyov S., Evodevo. January 31, 2018; 9 4.                    


Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis., Aguero T., J Dev Biol. March 1, 2016; 4 (1):               


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Targeted gene disruption in Xenopus laevis using CRISPR/Cas9., Wang F., Cell Biosci. January 1, 2015; 5 15.            


Poly(A)-tail profiling reveals an embryonic switch in translational control., Subtelny AO., Nature. April 3, 2014; 508 (7494): 66-71.        


Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis., Guo X., Development. February 1, 2014; 141 (3): 707-14.              


Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis., Nakayama T., Genesis. December 1, 2013; 51 (12): 835-43.            


Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia., Hwang IS., J Gerontol A Biol Sci Med Sci. January 1, 2007; 62 (1): 41-9.


The 5'-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf., Yoshida T., Nucleic Acids Res. June 21, 2005; 33 (11): 3465-78.                  


Temporal and spatial expression patterns of FoxD2 during the early development of Xenopus laevis., Pohl BS., Mech Dev. February 1, 2002; 111 (1-2): 181-4.              


Tissue-specific molecular diversity of amidating enzymes (peptidylglycine alpha-hydroxylating monooxygenase and peptidylhydroxyglycine N-C lyase) in Xenopus laevis., Iwasaki Y., Eur J Biochem. June 15, 1993; 214 (3): 811-8.

???pagination.result.page??? 1