Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4863) Expression Attributions Wiki
XB-ANAT-511

Papers associated with nerve (and sox2)

Limit to papers also referencing gene:
Show all nerve papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C., Dev Biol. February 1, 2024; 506 20-30.


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


CRISPR/Cas9-based simple transgenesis in Xenopus laevis., Shibata Y., Dev Biol. September 1, 2022; 489 76-83.                                                        


Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis., Murugan NJ., Sci Adv. January 28, 2022; 8 (4): eabj2164.            


Molecular mechanisms of hearing loss in Nager syndrome., Maharana SK., Dev Biol. August 1, 2021; 476 200-208.            


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH., Front Neuroanat. January 1, 2021; 15 722374.                                                    


Long-term association of a transcription factor with its chromatin binding site can stabilize gene expression and cell fate commitment., Gurdon JB., Proc Natl Acad Sci U S A. June 30, 2020; 117 (26): 15075-15084.            


Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.        


Model systems for regeneration: Xenopus., Phipps LS., Development. March 19, 2020; 147 (6):           


Role of TrkA signaling during tadpole tail regeneration and early embryonic development in Xenopus laevis., Iimura A., Genes Cells. February 1, 2020; 25 (2): 86-99.                


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. July 1, 2019; 184 107-125.                        


Multi-site phosphorylation controls the neurogenic and myogenic activity of E47., Hardwick LJA., Biochem Biophys Res Commun. March 26, 2019; 511 (1): 111-116.        


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


The African clawed frog Xenopus laevis: A model organism to study regeneration of the central nervous system., Lee-Liu D., Neurosci Lett. June 23, 2017; 652 82-93.


A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo., Blitz IL., Dev Biol. June 15, 2017; 426 (2): 409-417.        


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N., Elife. August 31, 2016; 5                                                                         


The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling., Wang C., J Biol Chem. September 4, 2015; 290 (36): 21925-38.                  


Mesodermal origin of median fin mesenchyme and tail muscle in amphibian larvae., Taniguchi Y., Sci Rep. June 18, 2015; 5 11428.                


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


40LoVe and Samba are involved in Xenopus neural development and functionally distinct from hnRNP AB., Andreou M., PLoS One. January 1, 2014; 9 (1): e85026.                


Germline Transgenic Methods for Tracking Cells and Testing Gene Function during Regeneration in the Axolotl., Khattak S., Stem Cell Reports. June 4, 2013; 1 (1): 90-103.            


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M., Neural Dev. April 26, 2012; 7 13.            


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


Nkx6 genes pattern the frog neural plate and Nkx6.1 is necessary for motoneuron axon projection., Dichmann DS., Dev Biol. January 15, 2011; 349 (2): 378-86.                            


Long-term consequences of Sox9 depletion on inner ear development., Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


Delta-Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis., Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.            


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.  


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development., Olivares GH., Dev Biol. May 15, 2009; 329 (2): 338-49.    


Expression cloning of Xenopus zygote arrest 2 (Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis., Nakajima Y., Genes Cells. May 1, 2009; 14 (5): 583-95.                    


Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis., Bardine N., Dev Dyn. March 1, 2009; 238 (3): 755-65.              


Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction., Steventon B., Development. March 1, 2009; 136 (5): 771-9.        


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways., Zhao H., Development. April 1, 2008; 135 (7): 1283-93.                            


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


Unexpected activities of Smad7 in Xenopus mesodermal and neural induction., de Almeida I., Mech Dev. January 1, 2008; 125 (5-6): 421-31.              


Cloning and developmental expression of the soxB2 genes, sox14 and sox21, during Xenopus laevis embryogenesis., Cunningham DD., Int J Dev Biol. January 1, 2008; 52 (7): 999-1004.    


XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos., Cao Y, Cao Y., Mech Dev. January 1, 2006; 123 (1): 84-96.      


Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis., Shibata M., Mech Dev. December 1, 2005; 122 (12): 1322-39.                    


Comparative genomics on SOX2 orthologs., Katoh Y., Oncol Rep. September 1, 2005; 14 (3): 797-800.


Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures., Khokha MK., Dev Cell. March 1, 2005; 8 (3): 401-11.                          


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Early requirement of the transcriptional activator Sox9 for neural crest specification in Xenopus., Lee YH, Lee YH., Dev Biol. November 1, 2004; 275 (1): 93-103.          


XIdax, an inhibitor of the canonical Wnt pathway, is required for anterior neural structure formation in Xenopus., Michiue T., Dev Dyn. May 1, 2004; 230 (1): 79-90.        

???pagination.result.page??? 1 2 ???pagination.result.next???