Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2164) Expression Attributions Wiki
XB-ANAT-524

Papers associated with posterior (and tgfb1)

Limit to papers also referencing gene:
Show all posterior papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB., iScience. September 15, 2023; 26 (9): 107665.                          


Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development., Rankin SA, Rankin SA., Elife. October 13, 2021; 10


Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos., Umair Z., Anim Cells Syst (Seoul). November 27, 2020; 24 (6): 359-370.            


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C., Development. February 5, 2020; 147 (3):                                     


Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage., Kirmizitas A., Proc Natl Acad Sci U S A. June 6, 2017; 114 (23): 5814-5821.                    


Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation., Kalkan T., Mol Biol Cell. July 1, 2009; 20 (14): 3436-50.                          


Identification of a novel negative regulator of activin/nodal signaling in mesendodermal formation of Xenopus embryos., Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.                        


FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination., Dupont S., Cell. January 9, 2009; 136 (1): 123-35.  


Ectodermal factor restricts mesoderm differentiation by inhibiting p53., Sasai N., Cell. May 30, 2008; 133 (5): 878-90.                        


Regulation of the Xenopus Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites., Howard L., Dev Biol. October 15, 2007; 310 (2): 402-15.      


ADMP2 is essential for primitive blood and heart development in Xenopus., Kumano G., Dev Biol. November 15, 2006; 299 (2): 411-23.                


Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo., Ho DM., Dev Biol. July 15, 2006; 295 (2): 730-42.            


The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo., Chen C., Development. January 1, 2006; 133 (2): 319-29.              


XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning., Onuma Y., Development. January 1, 2006; 133 (2): 237-50.                                      


DRAGON, a bone morphogenetic protein co-receptor., Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.                  


ALK4 functions as a receptor for multiple TGF beta-related ligands to regulate left-right axis determination and mesoderm induction in Xenopus., Chen Y., Dev Biol. April 15, 2004; 268 (2): 280-94.      


Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus., Takebayashi-Suzuki K., Development. September 1, 2003; 130 (17): 3929-39.  


Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation., Branford WW., Curr Biol. December 23, 2002; 12 (24): 2136-41.              


Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein., Muñoz-Sanjuán I., Development. December 1, 2002; 129 (23): 5529-40.    


Direct and indirect regulation of derrière, a Xenopus mesoderm-inducing factor, by VegT., White RJ., Development. October 1, 2002; 129 (20): 4867-76.    


Smad10 is required for formation of the frog nervous system., LeSueur JA., Dev Cell. June 1, 2002; 2 (6): 771-83.            


Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation., Tremblay KD., Development. September 1, 2001; 128 (18): 3609-21.


Origins of inner ear sensory organs revealed by fate map and time-lapse analyses., Kil SH., Dev Biol. May 15, 2001; 233 (2): 365-79.              


Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling., Branford WW., Dev Biol. July 15, 2000; 223 (2): 291-306.              


Gdf16, a novel member of the growth/differentiation factor subgroup of the TGF-beta superfamily, is expressed in the hindbrain and epibranchial placodes., Vokes SA., Mech Dev. July 1, 2000; 95 (1-2): 279-82.  


Transforming growth factor-beta5 expression during early development of Xenopus laevis., Kondaiah P., Mech Dev. July 1, 2000; 95 (1-2): 207-9.                


Characterization of zebrafish smad1, smad2 and smad5: the amino-terminus of smad1 and smad5 is required for specific function in the embryo., Müller F., Mech Dev. October 1, 1999; 88 (1): 73-88.  


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


cDNA cloning and distribution of the Xenopus follistatin-related protein., Okabayashi K., Biochem Biophys Res Commun. January 8, 1999; 254 (1): 42-8.                  


A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis., Weisberg E., Mech Dev. December 1, 1998; 79 (1-2): 17-27.        


FGF-mediated mesoderm induction involves the Src-family kinase Laloo., Weinstein DC., Nature. August 27, 1998; 394 (6696): 904-8.


Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1., Peale FV., Mech Dev. July 1, 1998; 75 (1-2): 167-70.


BMP1-related metalloproteinases promote the development of ventral mesoderm in early Xenopus embryos., Goodman SA., Dev Biol. March 15, 1998; 195 (2): 144-57.


Xenopus eHAND: a marker for the developing cardiovascular system of the embryo that is regulated by bone morphogenetic proteins., Sparrow DB., Mech Dev. February 1, 1998; 71 (1-2): 151-63.            


XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues., Frisch A., Development. February 1, 1998; 125 (3): 431-42.                  


Misexpression of chick Vg1 in the marginal zone induces primitive streak formation., Shah SB., Development. December 1, 1997; 124 (24): 5127-38.    


The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds., Armes NA., Development. October 1, 1997; 124 (19): 3797-804.                


Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer., Joseph EM., Dev Biol. April 15, 1997; 184 (2): 367-72.        


A Xenopus nodal-related gene that acts in synergy with noggin to induce complete secondary axis and notochord formation., Lustig KD., Development. October 1, 1996; 122 (10): 3275-82.                


Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer., Moos M., Development. December 1, 1995; 121 (12): 4293-301.                  


Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation., Zhou X., Nature. February 11, 1993; 361 (6412): 543-7.


Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction., Kimelman D., Development. September 1, 1992; 116 (1): 1-9.


DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction., Jones CM., Development. June 1, 1992; 115 (2): 639-47.


Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse., Jones CM., Development. February 1, 1991; 111 (2): 531-42.

???pagination.result.page??? 1