Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (241) Attributions Wiki

Papers associated with NF stage 42

Limit to papers also referencing gene:
Results 1 - 50 of 241 results

Page(s): 1 2 3 4 5 Next

Sort Newest To Oldest Sort Oldest To Newest

Ultrastructural analysis of some functional aspects of Xenopus laevis pancreas during development and metamorphosis., Leone F, Lambert-Gardini S, Sartori C, Scapin S., J Embryol Exp Morphol. December 1, 1976; 36 (3): 711-24.

The formation of photoreceptor synapses in the retina of larval Xenopus., Chen F, Witkovsky P., J Neurocytol. December 1, 1978; 7 (6): 721-40.

Ultrastructural development of Rohon-Beard neurons: loss of intramitochondrial granules parallels loss of calcium action potentials., Lamborghini JE, Revenaugh M, Spitzer NC., J Comp Neurol. February 15, 1979; 183 (4): 741-52.

Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation., Lamborghini JE., J Comp Neurol. January 15, 1980; 189 (2): 323-33.

The emergence, localization, and maturation of neurotransmitter systems during development of the retina in Xenopus laevis: II. Glycine., Rayborn ME, Sarthy PV, Lam DM, Hollyfield JG., J Comp Neurol. February 1, 1981; 195 (4): 585-93.

A freeze-fracture study of synaptogenesis in the distal retina of larval Xenopus., Nagy AR, Witkovsky P., J Neurocytol. December 1, 1981; 10 (6): 897-919.

Immunohistochemical demonstration of TSH-, LH- and ACTH-cells in the hypophysis of tadpoles of Xenopus laevis D., Moriceau-Hay D, Doerr-Schott J, Dubois MP., Cell Tissue Res. January 1, 1982; 225 (1): 57-64.

Response to skin grafts exchanged among siblings of larval and adult gynogenetic diploids in Xenopus laevis., Obara N, Kawahara H, Katagiri C., Transplantation. July 1, 1983; 36 (1): 91-5.

The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW, Jenks BG, Van Overbeeke AP., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              

The development of the static vestibulo-ocular reflex in the southern clawed toad, Xenopus laevis. I. Intact animals., Horn E, Lang HG, Rayer B., J Comp Physiol A. December 1, 1986; 159 (6): 869-78.

Formation of visual pigment chromophores during the development of Xenopus laevis., Azuma M, Seki T, Fujishita S., Vision Res. January 1, 1988; 28 (9): 959-64.

Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE, Jamrich M, Richter K, Sargent TD, Dawid IB., Genes Dev. July 1, 1988; 2 (7): 853-62.            

Identities, antigenic determinants, and topographic distributions of neurofilament proteins in the nervous systems of adult frogs and tadpoles of Xenopus laevis., Szaro BG, Gainer H., J Comp Neurol. July 15, 1988; 273 (3): 344-58.

Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG, Gainer H., Dev Biol. October 1, 1988; 471 (2): 207-24.                    

Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B, Herrmann H, Franz JK, Franke WW., Development. December 1, 1988; 104 (4): 533-48.                      

Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H, Fouquet B, Franke WW., Development. February 1, 1989; 105 (2): 299-307.              

Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H, Fouquet B, Franke WW., Development. February 1, 1989; 105 (2): 279-98.                      

The switch from larval to adult globin gene expression in Xenopus laevis is mediated by erythroid cells from distinct compartments., Weber R, Blum B, Müller PR., Development. August 1, 1991; 112 (4): 1021-9.              

The development of swimming rhythmicity in post-embryonic Xenopus laevis., Sillar KT, Wedderburn JF, Simmers AJ., Proc Biol Sci. November 22, 1991; 246 (1316): 147-53.

Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D, Harland RM., Development. June 1, 1992; 115 (2): 439-48.            

The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae., Sillar KT, Simmers AJ, Wedderburn JF., Proc Biol Sci. July 22, 1992; 249 (1324): 65-70.

N-cadherin transcripts in Xenopus laevis from early tailbud to tadpole., Simonneau L, Broders F, Thiery JP., Dev Dyn. August 1, 1992; 194 (4): 247-60.                

Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis., Sillar KT, Wedderburn JF, Simmers AJ., Proc Biol Sci. November 23, 1992; 250 (1328): 107-14.

Interphotoreceptor retinoid-binding protein (IRBP), a major 124 kDa glycoprotein in the interphotoreceptor matrix of Xenopus laevis. Characterization, molecular cloning and biosynthesis., Gonzalez-Fernandez F, Kittredge KL, Rayborn ME, Hollyfield JG, Landers RA, Saha M, Grainger RM., J Cell Sci. May 1, 1993; 105 ( Pt 1) 7-21.                        

Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML, Mathers P, Jamrich M., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        

Induction of cardiac muscle differentiation in isolated animal pole explants of Xenopus laevis embryos., Logan M, Mohun T., Development. July 1, 1993; 118 (3): 865-75.              

[Ontogeny of the pronephros and mesonephros in the South African clawed frog, Xenopus laevis Daudin, with special reference to the appearance and movement of the renin-immunopositive cells]., Tahara T, Ogawa K, Taniguchi K., Jikken Dobutsu. October 1, 1993; 42 (4): 601-10.

Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium., Stiemke MM, Landers RA, al-Ubaidi MR, Rayborn ME, Hollyfield JG., Dev Biol. March 1, 1994; 162 (1): 169-80.              

Lipovitellin 2 beta is the 31 kD Ni(2+)-binding protein (pNiXb) in Xenopus oocytes and embryos., Grbac-Ivankovic S, Antonijczuk K, Varghese AH, Plowman MC, Antonijczuk A, Korza G, Ozols J, Sunderman FW., Mol Reprod Dev. July 1, 1994; 38 (3): 256-63.

Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo., Saint-Jeannet JP, Thiery JP, Koteliansky VE., Dev Biol. August 1, 1994; 164 (2): 374-82.          

The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.

A Xenopus c-kit-related receptor tyrosine kinase expressed in migrating stem cells of the lateral line system., Baker CV, Sharpe CR, Torpey NP, Heasman J, Wylie CC., Mech Dev. April 1, 1995; 50 (2-3): 217-28.    

Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis., O'Reilly MA, Smith JC, Cunliffe V., Development. May 1, 1995; 121 (5): 1351-9.                  

Intracellular acidification of gastrula ectoderm is important for posterior axial development in Xenopus., Gutknecht DR, Koster CH, Tertoolen LG, de Laat SW, Durston AJ., Development. June 1, 1995; 121 (6): 1911-25.                  

The MLC1f/3f gene is an early marker of somitic muscle differentiation in Xenopus laevis embryo., Thézé N, Hardy S, Wilson R, Allo MR, Mohun T, Thiebaud P, Thiebaud P., Dev Biol. October 1, 1995; 171 (2): 352-62.

Characterization of the Xenopus rhodopsin gene., Batni S, Scalzetti L, Moody SA, Knox BE., J Biol Chem. February 9, 1996; 271 (6): 3179-86.              

Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter., Weber H, Holewa B, Jones EA, Ryffel GU., Development. June 1, 1996; 122 (6): 1975-84.              

A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos., Ault KT, Dirksen ML, Jamrich M., Proc Natl Acad Sci U S A. June 25, 1996; 93 (13): 6415-20.          

Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4., Ladher R, Mohun TJ, Smith JC, Snape AM., Development. August 1, 1996; 122 (8): 2385-94.                          

The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S, Escandón E, Fraser SE., Dev Biol. October 10, 1996; 179 (1): 102-15.              

Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle., Newman CS, Grow MW, Cleaver O, Chia F, Krieg P., Dev Biol. January 15, 1997; 181 (2): 223-33.            

A set of novel tadpole specific genes expressed only in the epidermis are down-regulated by thyroid hormone during Xenopus laevis metamorphosis., Furlow JD, Berry DL, Wang Z, Brown DD., Dev Biol. February 15, 1997; 182 (2): 284-98.                        

Analysis of competence and of Brachyury autoinduction by use of hormone-inducible Xbra., Tada M, O'Reilly MA, Smith JC., Development. June 1, 1997; 124 (11): 2225-34.                      

Sequence and expression patterns of two forms of the middle molecular weight neurofilament protein (NF-M) of Xenopus laevis., Gervasi C, Szaro BG., Brain Res Mol Brain Res. September 1, 1997; 48 (2): 229-42.

Xsox17alpha and -beta mediate endoderm formation in Xenopus., Hudson C, Clements D, Friday RV, Stott D, Woodland HR., Cell. October 31, 1997; 91 (3): 397-405.  

Developmental changes in expression of ion currents accompany maturation of locomotor pattern in frog tadpoles., Sun Q, Dale N., J Physiol. February 15, 1998; 507 ( Pt 1) 257-64.

Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues., Huang S, Moody SA., Vis Neurosci. September 1, 1998; 15 (5): 969-77.

The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping., Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR, Blum M., Development. March 1, 1999; 126 (6): 1225-34.            

Conserved and divergent expression patterns of the proteolipid protein gene family in the amphibian central nervous system., Yoshida M, Shan WS, Colman DR., J Neurosci Res. July 1, 1999; 57 (1): 13-22.

Two skeletal alpha-tropomyosin transcripts with distinct 3''UTR have different temporal and spatial patterns of expression in the striated muscle lineages of Xenopus laevis., Hardy S, Hamon S, Cooper B, Mohun T, Thiébaud P., Mech Dev. September 1, 1999; 87 (1-2): 199-202.    

Page(s): 1 2 3 4 5 Next