Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2434) Expression Attributions Wiki
XB-ANAT-63

Papers associated with heart (and kcnj2)

Limit to papers also referencing gene:
Show all heart papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Extracellular cysteine disulfide bond break at Cys122 disrupts PIP 2 -dependent Kir2.1 channel function and leads to arrhythmias in Andersen-Tawil Syndrome., Cruz FM., bioRxiv. June 8, 2023;


Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer., Levin M., Cell. April 15, 2021;               


Dual Mechanism for Inhibition of Inwardly Rectifying Kir2.x Channels by Quinidine Involving Direct Pore Block and PIP2-interference., Koepple C., J Pharmacol Exp Ther. May 1, 2017; 361 (2): 209-218.


Class III antiarrhythmic drug dronedarone inhibits cardiac inwardly rectifying Kir2.1 channels through binding at residue E224., Xynogalos P., Naunyn Schmiedebergs Arch Pharmacol. December 1, 2014; 387 (12): 1153-61.


Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype., Ambrosini E., Hum Mol Genet. September 15, 2014; 23 (18): 4875-86.                      


A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1., Kokunai Y., Neurology. March 25, 2014; 82 (12): 1058-64.


Up-regulation of Kir2.1 (KCNJ2) by the serum & glucocorticoid inducible SGK3., Munoz C., Cell Physiol Biochem. January 1, 2014; 33 (2): 491-500.


Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase., Alesutan I., Biochem Biophys Res Commun. May 20, 2011; 408 (4): 505-10.


Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants., Kobayashi T., PLoS One. January 1, 2011; 6 (12): e28208.            


Kir2.x inward rectifier potassium channels are differentially regulated by adrenergic alpha1A receptors., Zitron E., J Mol Cell Cardiol. January 1, 2008; 44 (1): 84-94.


Activation of inwardly rectifying Kir2.x potassium channels by beta 3-adrenoceptors is mediated via different signaling pathways with a predominant role of PKC for Kir2.1 and of PKA for Kir2.2., Scherer D., Naunyn Schmiedebergs Arch Pharmacol. July 1, 2007; 375 (5): 311-22.


Inhibition by cocaine of G protein-activated inwardly rectifying K+ channels expressed in Xenopus oocytes., Kobayashi T., Toxicol In Vitro. June 1, 2007; 21 (4): 656-64.


Functional and clinical characterization of a mutation in KCNJ2 associated with Andersen-Tawil syndrome., Lu CW., J Med Genet. August 1, 2006; 43 (8): 653-9.


Polymorphic ventricular tachycardia and KCNJ2 mutations., Chun TU., Heart Rhythm. July 1, 2004; 1 (2): 235-41.


Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac)., Kobayashi T., Br J Pharmacol. March 1, 2003; 138 (6): 1119-28.


Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels., Picones A., Biophys J. October 1, 2001; 81 (4): 2035-49.


Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome., Plaster NM., Cell. May 18, 2001; 105 (4): 511-9.


The role of Kir2.1 in the genesis of native cardiac inward-rectifier K+ currents during pre- and postnatal development., Nakamura TY., Ann N Y Acad Sci. April 30, 1999; 868 434-7.


Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53., Zhu G., J Biol Chem. April 23, 1999; 274 (17): 11643-6.


Molecular characterization of an inwardly rectifying K+ channel from HeLa cells., Klein H., J Membr Biol. January 1, 1999; 167 (1): 43-52.


Molecular and functional heterogeneity of inward rectifier potassium channels in brain and heart., Kurachi Y., J Card Fail. December 1, 1996; 2 (4 Suppl): S59-62.


Susceptibility of cloned K+ channels to reactive oxygen species., Duprat F., Proc Natl Acad Sci U S A. December 5, 1995; 92 (25): 11796-800.


Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart., Inagaki N., J Biol Chem. March 17, 1995; 270 (11): 5691-4.


Cloning and functional expression of an inwardly rectifying K+ channel from human atrium., Wible BA., Circ Res. March 1, 1995; 76 (3): 343-50.


Cloning, localization, and functional expression of a human brain inward rectifier potassium channel (hIRK1)., Tang W., Recept Channels. January 1, 1995; 3 (3): 175-83.


Molecular cloning and expression of a human heart inward rectifier potassium channel., Raab-Graham KF., Neuroreport. December 20, 1994; 5 (18): 2501-5.


Gating mechanism of the cloned inward rectifier potassium channel from mouse heart., Ishihara K., J Membr Biol. October 1, 1994; 142 (1): 55-64.


Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain., Takahashi N., J Biol Chem. September 16, 1994; 269 (37): 23274-9.


Cloning a novel human brain inward rectifier potassium channel and its functional expression in Xenopus oocytes., Tang W., FEBS Lett. July 18, 1994; 348 (3): 239-43.


Cloning and functional expression of a cardiac inward rectifier K+ channel., Ishii K., FEBS Lett. January 24, 1994; 338 (1): 107-11.


Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel., Kubo Y., Nature. August 26, 1993; 364 (6440): 802-6.

???pagination.result.page??? 1