Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (72) Expression Attributions Wiki
XB-ANAT-683

Papers associated with basal lamina

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption., Jimah JR., Elife. December 1, 2016; 5                   


Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?, Bonfanti P., Int J Environ Res Public Health. July 28, 2015; 12 (8): 8828-48.                


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H., BMC Biol. May 29, 2014; 12 40.                        


GlialCAM, a protein defective in a leukodystrophy, serves as a ClC-2 Cl(-) channel auxiliary subunit., Jeworutzki E., Neuron. March 8, 2012; 73 (5): 951-61.                


Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates., Seifert AW., PLoS One. January 1, 2012; 7 (4): e32875.                      


Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus., Marjoram L., Development. February 1, 2011; 138 (3): 475-85.            


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


Nucleotide-induced Ca2+ signaling in sustentacular supporting cells of the olfactory epithelium., Hassenklöver T., Glia. November 15, 2008; 56 (15): 1614-24.


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


A function for dystroglycan in pronephros development in Xenopus laevis., Bello V., Dev Biol. May 1, 2008; 317 (1): 106-20.          


Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis., Hasebe T., Dev Dyn. August 1, 2007; 236 (8): 2338-45.  


Regeneration of the amphibian intestinal epithelium under the control of stem cell niche., Ishizuya-Oka A., Dev Growth Differ. February 1, 2007; 49 (2): 99-107.            


Dystroglycan is required for proper retinal layering., Lunardi A., Dev Biol. February 15, 2006; 290 (2): 411-20.            


Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration., Ishizuya-Oka A., Dev Growth Differ. December 1, 2005; 47 (9): 601-7.        


A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis., Fu L., J Biol Chem. July 29, 2005; 280 (30): 27856-65.


Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis., Utoh R., Dev Dyn. June 1, 2003; 227 (2): 157-69.              


Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency., Ishigaki K., Neuromuscul Disord. March 1, 2003; 13 (3): 236-44.


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis., Pollock NS., J Comp Neurol. October 28, 2002; 452 (4): 381-91.                


PRiMA: the membrane anchor of acetylcholinesterase in the brain., Perrier AL., Neuron. January 17, 2002; 33 (2): 275-85.


foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain., Sullivan SA., Dev Biol. April 15, 2001; 232 (2): 439-57.            


Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      


Separation of neural induction and neurulation in Xenopus., Lallier TE., Dev Biol. September 1, 2000; 225 (1): 135-50.                


Active zones on motor nerve terminals contain alpha 3beta 1 integrin., Cohen MW., J Neurosci. July 1, 2000; 20 (13): 4912-21.


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Nerve-induced disruption and reformation of beta1-integrin aggregates during development of the neuromuscular junction., Anderson MJ., Mech Dev. October 1, 1997; 67 (2): 125-39.


Selective early innervation of a subset of epidermal cells in Xenopus may be mediated by chondroitin sulfate proteoglycans., Somasekhar T., Brain Res Dev Brain Res. April 18, 1997; 99 (2): 208-15.


Proteolytic disruption of laminin-integrin complexes on muscle cells during synapse formation., Anderson MJ., Mol Cell Biol. September 1, 1996; 16 (9): 4972-84.


Demonstration of cells possessing tolerance-inducing activity in Xenopus laevis rendered tolerant perimetamorphically., Ono M., Transplantation. July 15, 1995; 60 (1): 66-70.


Erratic deposition of agrin during the formation of Xenopus neuromuscular junctions in culture., Anderson MJ., Dev Biol. July 1, 1995; 170 (1): 1-20.                      


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis., Valtorta F., Eur J Neurosci. February 1, 1995; 7 (2): 261-70.            


Changes associated with the basal lamina during metamorphosis of Xenopus laevis., Murata E., Acta Anat (Basel). January 1, 1994; 150 (3): 178-85.


Electronmicroscopic observation on the degeneration of skeletal muscles in Xenopus laevis during metamorphosis and after denervation., Imai M., Ann Anat. October 1, 1993; 175 (5): 417-23.


Cellular and subcellular distribution of HNK-1 immunoreactivity in the neural tube of Xenopus., Nordlander RH., J Comp Neurol. September 22, 1993; 335 (4): 538-51.


Induction of dystrophin localization in cultured Xenopus muscle cells by latex beads., Peng HB., J Cell Sci. October 1, 1992; 103 ( Pt 2) 551-63.                


Increases in pericellular proteolysis at developing neuromuscular junctions in culture., Champaneria S., Dev Biol. February 1, 1992; 149 (2): 261-77.


Development of the olfactory bulb in the clawed frog, Xenopus laevis: a morphological and quantitative analysis., Byrd CA., J Comp Neurol. December 1, 1991; 314 (1): 79-90.


Comparison of agrin-like proteins from the extracellular matrix of chicken kidney and muscle with neural agrin, a synapse organizing protein., Godfrey EW., Exp Cell Res. July 1, 1991; 195 (1): 99-109.


Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus., Haddon CM., Development. June 1, 1991; 112 (2): 541-50.                          


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Purification and partial characterization of Xenopus laevis tenascin from the XTC cell line., Riou JF., FEBS Lett. February 25, 1991; 279 (2): 346-50.


Morphologic changes of the basal lamina in the small intestine of Xenopus laevis during metamorphosis., Murata E., Acta Anat (Basel). January 1, 1991; 140 (1): 60-9.


Induction of a specialized muscle basal lamina at chimaeric synapses in culture., Swenarchuk LE., Development. September 1, 1990; 110 (1): 51-61.


The cell junctions of the notochord of Xenopus laevis tadpoles., Honer W., Tissue Cell. January 1, 1990; 22 (2): 149-55.


Ultrastructural comparison between regenerating and developing hindlimbs of Xenopus laevis tadpoles., Khan PA., Growth Dev Aging. January 1, 1990; 54 (4): 173-81.


Observation on the basal lamina of duodenal mesothelial cells during metamorphosis of Xenopus laevis., Murata E., Okajimas Folia Anat Jpn. December 1, 1989; 66 (5): 255-63.


Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts., Buchanan J., J Neurosci. May 1, 1989; 9 (5): 1540-54.


Observation on the basal lamina of duodenal epithelial cells during metamorphosis of Xenopus laevis., Murata E., Okajimas Folia Anat Jpn. October 1, 1988; 65 (4): 235-43.


The distribution of tenascin coincides with pathways of neural crest cell migration., Mackie EJ., Development. January 1, 1988; 102 (1): 237-50.              

???pagination.result.page??? 1 2 ???pagination.result.next???