Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (2197) Attributions Wiki
XB-STAGE-7

Papers associated with gastrula stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Adult frogs derived from the nuclei of single somatic cells., GURDON JB., Dev Biol. April 1, 1962; 4 256-73.            


[Enrichment of the vegetalizing induction factor from the clawed toad (Xenopus laevis) gastrula and determination of the molecular weight range by gradient centrifugation]., Faulhaber I., Hoppe Seylers Z Physiol Chem. May 1, 1970; 351 (5): 588-94.


[Evidence of deuterencephalic-spinocaudal induction activity in gastrula extracts of Xenopus laevis after hydroxyapatite chromatography or electrofocusing]., Faulhaber I, Geithe HP., Rev Suisse Zool. January 1, 1972; Suppl:103-17.


Appearance of antigenic material in gastrula ectoderm after neural induction., Ctanisstreet M, Deuchar EM., Cell Differ. April 1, 1972; 1 (1): 15-8.


The distribution of sodium and potassium in amphibian embryos during early development., Slack C, Warner AE, Warren RL., J Physiol. July 1, 1973; 232 (2): 297-312.


[A comparison of the inducing ability from the superficial layer of the yolk platelet coats and the microsomal fraction of cleavage, gastrula and neurula stages of Xenopus laevis]., Faulhaber I, Lyra L., Wilhelm Roux Arch Entwickl Mech Org. December 1, 1974; 176 (2): 151-157.


Quantitative studies of germ plasm and germ cells during early embryogenesis of Xenopus laevis., Whitington PM, Dixon KE., J Embryol Exp Morphol. February 1, 1975; 33 (1): 57-74.            


Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians., Cooke J., J Embryol Exp Morphol. February 1, 1975; 33 (1): 147-57.


Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer., Keller RE., Dev Biol. February 1, 1975; 42 (2): 222-41.


Mitosis in presumptive primordial germ cells in post-blastula embryos of Xenopus laevis., Dziadek M, Dixon KE., J Exp Zool. May 1, 1975; 192 (2): 285-91.


Alkaline phosphatase isozymes of Xenopus laevis embryos and tissues., Maekawa H, Yamana K., J Exp Zool. May 1, 1975; 192 (2): 155-64.


Ribonucleotide reductase activity during amphibian development., Tondeur-Six N, Tencer R, Brachet J., Biochim Biophys Acta. June 2, 1975; 395 (1): 41-7.


RNA synthesis in nuclei isolated from early embryos of Xenopus laevis., Ramage PR, Barry JM., Biochim Biophys Acta. June 16, 1975; 395 (2): 152-63.


Correlation between the cell cycle in the neurectoderm and differentiation during the early development of Xenopus laevis. 1. BUdR sensitivity during gastrulation., Maleyvar RP, Lowery R., Cytobios. January 1, 1976; 17 (65): 21-30.


Ribosomes from Xenopus laevis eggs and embryos in a cell-free protein-synthesizing system: translational regulation., Van der Saag PT, Vlak JM, De Greef TF., Cell Differ. March 1, 1976; 4 (6): 385-97.


Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer., Keller RE., Dev Biol. July 1, 1976; 51 (1): 118-37.


Multiple forms of DNA-dependent DNA polymerase during early development and in somatic cells of Xenopus laevis., Grippo P, Caruso A, Locorotondo G, Labella T., Cell Differ. July 1, 1976; 5 (2): 121-8.


Observations on the migration and proliferation of gonocytes in Xenopus laevis., Kamimura M, Ikenishi K, Kotani M, Matsuno T., J Embryol Exp Morphol. August 1, 1976; 36 (1): 197-207.


Inducing activity of fractionated microsomal material from theXenopus laevis gastrula stage., Wall R, Faulhaber I., Wilehm Roux Arch Dev Biol. September 1, 1976; 180 (3): 207-212.


Reiteration frequency of the histone genes in the genome of the amphibian, Xenopus laevis., Jacob E, Malacinski G, Birnstiel ML., Eur J Biochem. October 1, 1976; 69 (1): 45-54.


Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis., Johnson KE., J Cell Sci. December 1, 1976; 22 (3): 575-83.


An autoradiographic analysis of nucleic acid synthesis in the presumptive primordial germ cells of Xenopus laevis., Dziadek M, Dixon KE., J Embryol Exp Morphol. February 1, 1977; 37 (1): 13-31.


Lectin binding to dissociated cells from two species of Xenopus embryos., Johnson KE, Smith EP., Cell Differ. March 1, 1977; 5 (5-6): 301-9.


[Effect of valinomycin on mitotic activity and ciliary movement during embryonic development]., Brachet J, Alexandre H., C R Acad Hebd Seances Acad Sci D. March 20, 1978; 286 (11): 895-8.


Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis., Keller RE., J Morphol. August 1, 1978; 157 (2): 223-247.


Changes in the cell surface coat during the development ofXenopus laevis embryos, detected by lectins., Nosek J., Wilehm Roux Arch Dev Biol. September 1, 1978; 184 (3): 181-193.


Changes in protein synthesis during the development of Xenopus laevis., Ballantine JE, Woodland HR, Sturgess EA., J Embryol Exp Morphol. June 1, 1979; 51 137-53.


Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I. The cell cycle during new pattern formation in response to implanted organizers., Cooke J., J Embryol Exp Morphol. June 1, 1979; 51 165-82.


Utilization of stored mRNA in Xenopus embryos and its replacement by newly synthesized transcripts: histone H1 synthesis using interspecies hybrids., Woodland HR, Flynn JM, Wyllie AJ., Cell. September 1, 1979; 18 (1): 165-71.


[Immunohistochemical identification of specific antigens in stained and balsam-embedded eye lens sections]., Mikhaĭlov AT, Gorgoliuk NA., Biull Eksp Biol Med. September 1, 1979; 88 (9): 367-9.


Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation., Cooke J., J Embryol Exp Morphol. October 1, 1979; 53 269-89.


Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation., Lamborghini JE., J Comp Neurol. January 15, 1980; 189 (2): 323-33.


The effects of Tunicamycin and 2-deoxy-D-glucose on the development ofXenopus laevis embryos., Romanovský A, Nosek J., Wilehm Roux Arch Dev Biol. February 1, 1980; 189 (1): 81-82.


The role of tensile fields and contact cell polarization in the morphogenesis of amphibian axial rudiments., Beloussov LV., Wilehm Roux Arch Dev Biol. February 1, 1980; 188 (1): 1-7.


An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos., Slack JM, Forman D., J Embryol Exp Morphol. April 1, 1980; 56 283-99.


Actin synthesis during the early development of Xenopus laevis., Sturgess EA, Ballantine JE, Woodland HR, Mohun PR, Lane CD, Dimitriadis GJ., J Embryol Exp Morphol. August 1, 1980; 58 303-20.


An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians., Youn BW, Keller RE, Malacinski GM., J Embryol Exp Morphol. October 1, 1980; 59 223-47.                        


A comparison of sequence complexity of nuclear and polysomal poly(A)+ RNA from different developmental stages ofXenopus laevis., Knöchel W, Bladauski D., Wilehm Roux Arch Dev Biol. October 1, 1980; 188 (3): 187-193.


Paternal gene expression in developing hybrid embryos of Xenopus laevis and Xenopus borealis., Woodland HR, Ballantine JE., J Embryol Exp Morphol. December 1, 1980; 60 359-72.


The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis., Keller RE., J Embryol Exp Morphol. December 1, 1980; 60 201-34.


The spatio-temporal framework of melanogenic induction in pigmented retinal cells of Xenopus laevis., Hoperskaya OA, Golubeva ON., J Embryol Exp Morphol. December 1, 1980; 60 173-88.


Correlation between the cell cycle in the neurectoderm and differentiation during the early development of Xenopus laevis. 2 Inhibition of DNA synthesis and mitosis during gastrulation., Maleyvar RP, Lowery R., Cytobios. January 1, 1981; 32 (126): 97-105.


Non-Coordinated Synthesis of RNA's in Pre-Gastrular Embryos of Xenopus Laevis., Shiokawa K, Tashiro K, Misumi Y, Yamana K., Dev Growth Differ. January 1, 1981; 23 (6): 589-597.


Cloning of cDNA sequences derived from poly(A)+ nuclear RNA ofXenopus laevis at different developmental stages: Evidence for stage specific regulation., Knöchel W, Bladauski D., Wilehm Roux Arch Dev Biol. March 1, 1981; 190 (2): 97-102.


An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis., Keller RE., J Exp Zool. April 1, 1981; 216 (1): 81-101.


Scale of body pattern adjusts to available cell number in amphibian embryos., Cooke J., Nature. April 30, 1981; 290 (5809): 775-8.


Transformation of frog embryos with a rabbit beta-globin gene., Rusconi S, Schaffner W., Proc Natl Acad Sci U S A. August 1, 1981; 78 (8): 5051-5.


Cell locomotion in vitro by Xenopus laevis gastrula mesodermal cells., Nakatsuji N, Johnson KE., Cell Motil. January 1, 1982; 2 (2): 149-61.


Cellular commitment for post-gastrular increase in alkaline phosphatase activity in Xenopus laevis development., Miyahara K, Shiokawa K, Yamana K., Differentiation. January 1, 1982; 21 (1): 45-9.


Polyadenylated mRNAs from various developmental stages of Xenopus laevis. Role of 26 S mRNA., De Bernardi F., Exp Cell Biol. January 1, 1982; 50 (5): 281-90.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???