Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (74) Attributions Wiki
XB-STAGE-70

Papers associated with NF stage 56

Limit to papers also referencing gene:
Results 1 - 50 of 74 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis., Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fukui A, Takamatsu N, Taira M, Ito M., Dev Biol. June 15, 2017; 426 (2): 393-400.                              


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP, Doherty GH, Sillar KT., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis., Nakai Y, Nakajima K, Robert J, Robert J, Yaoita Y., Genes Cells. March 1, 2016; 21 (3): 275-86.          


Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells., Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J., Dev Biol. December 15, 2015; 408 (2): 229-43.                              


Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis., Guselnikov SV, Grayfer L, De Jesús Andino F, Rogozin IB, Robert J, Robert J, Taranin AV., Dev Comp Immunol. November 1, 2015; 53 (1): 158-68.            


Arsenic(+3) and DNA methyltransferases, and arsenic speciation in tadpole and frog life stages of western clawed frogs (Silurana tropicalis) exposed to arsenate., Koch I, Zhang J, Button M, Gibson LA, Caumette G, Langlois VS, Reimer KJ, Cullen WR., Metallomics. August 1, 2015; 7 (8): 1274-84.


Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration., Mitogawa K, Makanae A, Satoh A, Satoh A., PLoS One. January 1, 2015; 10 (7): e0133375.                  


A Database of microRNA Expression Patterns in Xenopus laevis., Ahmed A, Ward NJ, Moxon S, Lopez-Gomollon S, Viaut C, Tomlinson ML, Patrushev I, Gilchrist MJ, Dalmay T, Dotlic D, Münsterberg AE, Wheeler GN., PLoS One. January 1, 2015; 10 (10): e0138313.          


Evidence for an amphibian sixth digit., Hayashi S, Kobayashi T, Yano T, Kamiyama N, Egawa S, Seki R, Takizawa K, Okabe M, Yokoyama H, Tamura K., Zoological Lett. January 1, 2015; 1 17.                  


Differential regulation of two histidine ammonia-lyase genes during Xenopus development implicates distinct functions during thyroid hormone-induced formation of adult stem cells., Luu N, Wen L, Fu L, Fujimoto K, Shi YB, Sun G., Cell Biosci. November 13, 2013; 3 (1): 43.              


Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations., Lambert FM, Malinvaud D, Gratacap M, Straka H, Vidal PP., J Neurosci. April 17, 2013; 33 (16): 6845-56.                


Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis., Nedelkovska H, Edholm ES, Haynes N, Robert J, Robert J., Biol Open. March 15, 2013; 2 (3): 335-42.                


Tissue-specific upregulation of MDS/EVI gene transcripts in the intestine by thyroid hormone during Xenopus metamorphosis., Miller TC, Sun G, Hasebe T, Fu L, Heimeier RA, Das B, Ishizuya-Oka A, Shi YB., PLoS One. January 1, 2013; 8 (1): e55585.      


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S, Morona R, Moreno N, González A., Front Neuroanat. January 1, 2013; 7 48.                    


The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles., Eto K, Iwama T, Tajima T, Abe S., Gen Comp Endocrinol. October 1, 2012; 179 (1): 14-21.            


Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG): a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy., Lametschwandtner A, Höll M, Bartel H, Anupunpisit V, Minnich B., Anat Sci Int. June 1, 2012; 87 (2): 88-100.                    


Optimized transgenesis in Xenopus laevis/gilli isogenetic clones for immunological studies., Nedelkovska H, Robert J, Robert J., Genesis. March 1, 2012; 50 (3): 300-6.      


Thyroid hormone-induced sonic hedgehog signal up-regulates its own pathway in a paracrine manner in the Xenopus laevis intestine during metamorphosis., Hasebe T, Kajita M, Fu L, Shi YB, Ishizuya-Oka A., Dev Dyn. February 1, 2012; 241 (2): 403-14.        


Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb., McEwan J, Lynch J, Beck CW., Dev Dyn. May 1, 2011; 240 (5): 1259-70.                        


Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis., Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi YB., PLoS One. October 22, 2010; 5 (10): e13605.                    


Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus., Lambert FM, Malinvaud D, Glaunès J, Bergot C, Straka H, Vidal PP., J Neurosci. October 7, 2009; 29 (40): 12477-83.      


Clotrimazole exposure modulates aromatase activity in gonads and brain during gonadal differentiation in Xenopus tropicalis frogs., Gyllenhammar I, Eriksson H, Söderqvist A, Lindberg RH, Fick J, Berg C., Aquat Toxicol. January 31, 2009; 91 (2): 102-9.


Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development., Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT., PLoS One. January 1, 2009; 4 (1): e3914.                  


Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments., Moreno N, González A, Rétaux S., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.                  


Membrane type-1 matrix metalloproteinases and tissue inhibitor of metalloproteinases-2 RNA levels mimic each other during Xenopus laevis metamorphosis., Walsh LA, Carere DA, Cooper CA, Damjanovski S., PLoS One. October 10, 2007; 2 (10): e1000.          


Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration., Suzuki M, Satoh A, Ide H, Tamura K, Tamura K., Dev Biol. April 15, 2007; 304 (2): 675-86.              


tBid mediated activation of the mitochondrial death pathway leads to genetic ablation of the lens in Xenopus laevis., Du Pasquier D, Chesneau A, Ymlahi-Ouazzani Q, Boistel R, Pollet N, Ballagny C, Sachs LM, Demeneix B, Mazabraud A., Genesis. January 1, 2007; 45 (1): 1-10.            


Shh/BMP-4 signaling pathway is essential for intestinal epithelial development during Xenopus larval-to-adult remodeling., Ishizuya-Oka A, Hasebe T, Shimizu K, Suzuki K, Ueda S., Dev Dyn. December 1, 2006; 235 (12): 3240-9.      


Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3'' untranslated region of the DEADSouth gene., Kataoka K, Yamaguchi T, Orii H, Tazaki A, Watanabe K, Mochii M., Mech Dev. October 1, 2006; 123 (10): 746-60.              


Developmental cell death during Xenopus metamorphosis involves BID cleavage and caspase 2 and 8 activation., Du Pasquier D, Rincheval V, Sinzelle L, Chesneau A, Ballagny C, Sachs LM, Demeneix B, Mazabraud A., Dev Dyn. August 1, 2006; 235 (8): 2083-94.                  


Leptin (ob gene) of the South African clawed frog Xenopus laevis., Crespi EJ, Denver RJ., Proc Natl Acad Sci U S A. June 27, 2006; 103 (26): 10092-7.            


One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis., Fujimoto K, Nakajima K, Yaoita Y., Dev Growth Differ. May 1, 2006; 48 (4): 223-41.            


Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis., Marsh-Armstrong N, Cai L, Brown DD., Proc Natl Acad Sci U S A. January 6, 2004; 101 (1): 165-70.          


Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene., Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki K, Obara M, Yoshizato K., Dev Dyn. December 1, 2002; 225 (4): 561-70.                


Rod sensitivity during Xenopus development., Xiong WH, Yau KW., J Gen Physiol. December 1, 2002; 120 (6): 817-27.                    


How a highly complex three-dimensional network of blood vessels regresses: the gill blood vascular system of tadpoles of Xenopus during metamorphosis. A SEM study on microvascular corrosion casts., Minnich B, Bartel H, Lametschwandtner A., Microvasc Res. November 1, 2002; 64 (3): 425-37.


Response of the amphibian tadpole Xenopus laevis to atrazine during sexual differentiation of the ovary., Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D., Environ Toxicol Chem. June 1, 2002; 21 (6): 1264-7.


Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes., Charbonnier F, Gaspera BD, Armand AS, Van der Laarse WJ, Launay T, Becker C, Gallien CL, Chanoine C., J Biol Chem. January 11, 2002; 277 (2): 1139-47.              


Connexin43 expression during Xenopus development., van der Heyden MA, Roeleveld L, Peterson J, Destrée OH., Mech Dev. October 1, 2001; 108 (1-2): 217-20.              


FGF-10 stimulates limb regeneration ability in Xenopus laevis., Yokoyama H, Ide H, Tamura K, Tamura K., Dev Biol. May 1, 2001; 233 (1): 72-9.      


The vegetally localized mRNA fatvg is associated with the germ plasm in the early embryo and is later expressed in the fat body., Chan AP, Kloc M, Bilinski S, Etkin LD., Mech Dev. January 1, 2001; 100 (1): 137-40.          


Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs., Wolfe AD, Nye HL, Cameron JA., Dev Dyn. August 1, 2000; 218 (4): 681-97.        


Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds., Yokoyama H, Yonei-Tamura S, Endo T, Izpisúa Belmonte JC, Tamura K, Tamura K, Ide H., Dev Biol. March 1, 2000; 219 (1): 18-29.              


Conserved and divergent expression of T-box genes Tbx2-Tbx5 in Xenopus., Takabatake Y, Takabatake T, Takeshima K., Mech Dev. March 1, 2000; 91 (1-2): 433-7.                            


Trophic effects of androgen: development and hormonal regulation of neuron number in a sexually dimorphic vocal motor nucleus., Kay JN, Hannigan P, Kelley DB., J Neurobiol. September 5, 1999; 40 (3): 375-85.


Spatial and temporal regulation of collagenases-3, -4, and stromelysin -3 implicates distinct functions in apoptosis and tissue remodeling during frog metamorphosis., Damjanovski S, Ishizuya-Oka A, Shi YB, Shi YB., Cell Res. June 1, 1999; 9 (2): 91-105.      


Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus., Mani SS, Besharse JC, Knox BE., J Biol Chem. May 28, 1999; 274 (22): 15590-7.              


The expression pattern of thyroid hormone response genes in remodeling tadpole tissues defines distinct growth and resorption gene expression programs., Berry DL, Rose CS, Remo BF, Brown DD., Dev Biol. November 1, 1998; 203 (1): 24-35.                  


Multiple digit formation in Xenopus limb bud recombinants., Yokoyama H, Endo T, Tamura K, Tamura K, Yajima H, Ide H., Dev Biol. April 1, 1998; 196 (1): 1-10.          


Natural cytotoxicity towards allogeneic tumour targets in Xenopus mediated by diverse splenocyte populations., Horton TL, Ritchie P, Watson MD, Horton JD., Dev Comp Immunol. March 1, 1998; 22 (2): 217-30.

Page(s): 1 2 Next