Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3426) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and tbx2)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Molecular mechanisms of hearing loss in Nager syndrome., Maharana SK., Dev Biol. August 1, 2021; 476 200-208.            


Tbx2 regulates anterior neural specification by repressing FGF signaling pathway., Cho GS., Dev Biol. January 15, 2017; 421 (2): 183-193.              


Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa., Evans BJ., PLoS One. December 16, 2015; 10 (12): e0142823.                                                      


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation., Pai VP., J Neurosci. March 11, 2015; 35 (10): 4366-85.                    


TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus., Futel M., J Cell Sci. March 1, 2015; 128 (5): 888-99.                      


NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation., Gampe K., Purinergic Signal. March 1, 2015; 11 (1): 155-60.


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I., Front Cell Neurosci. February 5, 2015; 9 26.  


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus., Hong CS., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.                    


MHC class I limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling., Dixon-Salazar TJ., J Neurosci. August 27, 2014; 34 (35): 11844-56.


The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling., Jacox L., Cell Rep. July 24, 2014; 8 (2): 596-609.                            


Functional diversity of voltage-sensing phosphatases in two urodele amphibians., Mutua J., Physiol Rep. July 16, 2014; 2 (7):                 


Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene., Feiner N., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.              


Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity., Chen WC., Dev Biol. June 15, 2014; 390 (2): 261-72.          


Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis., Nemet I., J Neurosci. June 11, 2014; 34 (24): 8164-74.                  


Phylogenic studies on the olfactory system in vertebrates., Taniguchi K., J Vet Med Sci. June 1, 2014; 76 (6): 781-8.                


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C., Dev Biol. May 1, 2014; 389 (1): 82-97.        


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube., Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.                                                                    


Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome., Karpinski BA., Dis Model Mech. February 1, 2014; 7 (2): 245-57.                


Characterization of the insulin-like growth factor binding protein family in Xenopus tropicalis., Haramoto Y., Int J Dev Biol. January 1, 2014; 58 (9): 705-11.                                            


Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis., Nakayama T., Genesis. December 1, 2013; 51 (12): 835-43.            


Maturin is a novel protein required for differentiation during primary neurogenesis., Martinez-De Luna RI., Dev Biol. December 1, 2013; 384 (1): 26-40.                        


Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo., Law AL., J Cell Biol. November 25, 2013; 203 (4): 673-89.                    


Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets., Pratt KG., Dis Model Mech. September 1, 2013; 6 (5): 1057-65.  


Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin., Lodowski KH., J Neurosci. August 21, 2013; 33 (34): 13621-38.                      


Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis., Beyeler A., PLoS One. August 12, 2013; 8 (8): e71013.                


Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation., Kassing V., PLoS One. May 7, 2013; 8 (5): e62846.              


Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus., Ori M., Int J Dev Biol. January 1, 2013; 57 (9-10): 707-14.          


Microarray-based identification of Pitx3 targets during Xenopus embryogenesis., Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.                          


Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors., Najafi M., J Gen Physiol. September 1, 2012; 140 (3): 249-66.                  


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B., Dev Biol. July 1, 2012; 367 (1): 55-65.                


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer., Sudou N., Development. May 1, 2012; 139 (9): 1651-61.                  


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Transcription factors involved in lens development from the preplacodal ectoderm., Ogino H., Dev Biol. March 15, 2012; 363 (2): 333-47.      


Roles of ADAM13-regulated Wnt activity in early Xenopus eye development., Wei S., Dev Biol. March 1, 2012; 363 (1): 147-54.                          


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo., Martin LK., Dev Growth Differ. February 1, 2012; 54 (2): 153-66.                


Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway., Fujimi TJ., Dev Biol. January 15, 2012; 361 (2): 220-31.                          


Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis., Pai VP., Development. January 1, 2012; 139 (2): 313-23.                


Identification and expression analysis of GPAT family genes during early development of Xenopus laevis., Bertolesi GE., Gene Expr Patterns. January 1, 2012; 12 (7-8): 219-27.                            


Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus., Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.                                          


xCOUP-TF-B regulates xCyp26 transcription and modulates retinoic acid signaling for anterior neural patterning in Xenopus., Tanibe M., Int J Dev Biol. January 1, 2012; 56 (4): 239-44.            


A homolog of Subtilisin-like Proprotein Convertase 7 is essential to anterior neural development in Xenopus., Senturker S., PLoS One. January 1, 2012; 7 (6): e39380.                


Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway., Takahashi C., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.                  


A novel mechanism for the transcriptional regulation of Wnt signaling in development., Vacik T., Genes Dev. September 1, 2011; 25 (17): 1783-95.      

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???