Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3426) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and pc.1)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal-ventral patterning., Forristall CA., Dev Dyn. October 1, 2014; 243 (10): 1262-74.            


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Plasma membrane cholesterol depletion disrupts prechordal plate and affects early forebrain patterning., Reis AH., Dev Biol. May 15, 2012; 365 (2): 350-62.                    


GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS., PLoS One. January 1, 2012; 7 (1): e29086.            


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T., PLoS One. January 1, 2012; 7 (4): e33922.            


Bmp indicator mice reveal dynamic regulation of transcriptional response., Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.                


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J., J Biol Chem. August 26, 2011; 286 (34): 30171-80.              


Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development., Gorgoni B., Proc Natl Acad Sci U S A. May 10, 2011; 108 (19): 7844-9.                        


Bisphenol A induces otolith malformations during vertebrate embryogenesis., Gibert Y., BMC Dev Biol. January 26, 2011; 11 4.            


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway., Takai A., Development. October 1, 2010; 137 (19): 3293-302.            


Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo., Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.                                                


Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex RNA., Cuykendall TN., Dev Dyn. June 1, 2010; 239 (6): 1838-48.                              


Long-term consequences of Sox9 depletion on inner ear development., Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.          


Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs., Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.      


Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord., Elliott KL., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.          


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled., Grandy D., J Biol Chem. June 12, 2009; 284 (24): 16256-16263.


Retinal regeneration in the Xenopus laevis tadpole: a new model system., Vergara MN., Mol Vis. May 18, 2009; 15 1000-13.          


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Identification and expression of XRTN1-A and XRTN1-C in Xenopus laevis., Park EC., Dev Dyn. December 1, 2007; 236 (12): 3545-53.    


A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina., Onorati M., Neural Dev. June 27, 2007; 2 12.            


Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development., Hendricks M., Neural Dev. March 15, 2007; 2 6.        


Xtn3 is a developmentally expressed cardiac and skeletal muscle-specific novex-3 titin isoform., Brown DD., Gene Expr Patterns. October 1, 2006; 6 (8): 913-8.          


State-independent block of BK channels by an intracellular quaternary ammonium., Wilkens CM., J Gen Physiol. September 1, 2006; 128 (3): 347-64.                      


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Proprotein convertase genes in Xenopus development., Nelsen S., Dev Dyn. July 1, 2005; 233 (3): 1038-44.    


Identification and expression of XRTN2 and XRTN3 during Xenopus development., Park EC., Dev Dyn. May 1, 2005; 233 (1): 240-7.  


Parameters of drug antagonism: re-examination of two modes of functional competitive drug antagonism on intraocular muscles., Patil PN., J Pharm Pharmacol. August 1, 2004; 56 (8): 1045-53.


Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles., Manzini I., J Gen Physiol. February 1, 2004; 123 (2): 99-107.              


Differential and overlapping expression patterns of X-dll3 and Pax-6 genes suggest distinct roles in olfactory system development of the African clawed frog Xenopus laevis., Franco MD., J Exp Biol. June 1, 2001; 204 (Pt 12): 2049-61.  


Misexpression of Xsiah-2 induces a small eye phenotype in Xenopus., Bogdan S., Mech Dev. May 1, 2001; 103 (1-2): 61-9.  


Neuronal turnover in the Xenopus laevis olfactory epithelium during metamorphosis., Higgs DM., J Comp Neurol. April 23, 2001; 433 (1): 124-30.


Tissue-specific expression of an Ornithine decarboxylase paralogue, XODC2, in Xenopus laevis., Cao Y., Mech Dev. April 1, 2001; 102 (1-2): 243-6.    


Xenopus Enhancer of Zeste (XEZ); an anteriorly restricted polycomb gene with a role in neural patterning., Barnett MW., Mech Dev. April 1, 2001; 102 (1-2): 157-67.              


Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos., Chen Y., Mech Dev. March 1, 2001; 101 (1-2): 91-103.        


The role of the brain in metamorphosis of the olfactory epithelium in the frog, Xenopus laevis., Higgs DM., Brain Res Dev Brain Res. December 10, 1999; 118 (1-2): 185-95.


Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist., Xu Q., Development. December 1, 1998; 125 (23): 4767-76.  


Metamorphic remodeling of the primary olfactory projection in Xenopus: developmental independence of projections from olfactory neuron subclasses., Reiss JO., J Neurobiol. February 1, 1997; 32 (2): 213-22.


Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis., Devic E., Mech Dev. October 1, 1996; 59 (2): 129-40.        

???pagination.result.page??? 1