Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3426) Expression Attributions Wiki
XB-ANAT-726

Papers associated with sensory system (and rho)

Limit to papers also referencing gene:
Show all sensory system papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses., Ismail T., Ecotoxicol Environ Saf. January 1, 2024; 269 115820.                      


Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis., Saumweber E., Front Cell Dev Biol. January 1, 2024; 12 1316048.                            


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Multi-omics approach dissects cis-regulatory mechanisms underlying North Carolina macular dystrophy, a retinal enhanceropathy., Van de Sompele S., Am J Hum Genet. November 3, 2022; 109 (11): 2029-2048.                                    


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


Zic5 stabilizes Gli3 via a non-transcriptional mechanism during retinal development., Sun J., Cell Rep. February 1, 2022; 38 (5): 110312.                                          


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling., Flach H., Dev Dyn. August 1, 2021; 250 (8): 1096-1112.                


Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity., Bertolesi GE., Front Neuroanat. January 1, 2021; 15 784478.      


The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors., Bertolesi GE., J Photochem Photobiol B. November 1, 2020; 212 112024.  


Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment., Rawlinson KA., Elife. October 22, 2019; 8                     


NudC regulates photoreceptor disk morphogenesis and rhodopsin localization., Boitet ER., FASEB J. August 1, 2019; 33 (8): 8799-8808.            


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. June 1, 2019; 32 18-27.                              


Human red and green cone opsins are O-glycosylated at an N-terminal Ser/Thr-rich domain conserved in vertebrates., Salom D., J Biol Chem. May 17, 2019; 294 (20): 8123-8133.                            


The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner., Buescher JL., Mol Vis. February 23, 2019; 25 165-173.      


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.                


Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway., Pan Y., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.                            


Nosip functions during vertebrate eye and cranial cartilage development., Flach H., Dev Dyn. September 1, 2018; 247 (9): 1070-1082.                


Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2., Grimm C., Sci Rep. June 18, 2018; 8 (1): 9316.            


An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus., Vick P., iScience. April 27, 2018; 2 76-85.                                        


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


Expression of the inactivating deiodinase, Deiodinase 3, in the pre-metamorphic tadpole retina., Le Blay K., PLoS One. January 1, 2018; 13 (4): e0195374.          


Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9., Feehan JM., Sci Rep. July 31, 2017; 7 (1): 6920.              


Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation., Ledford KL., Dev Biol. June 15, 2017; 426 (2): 418-428.                        


Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment., Schietroma C., J Cell Biol. June 5, 2017; 216 (6): 1849-1864.                  


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. June 1, 2017; 426 (1): 69-83.                        


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa., Vent-Schmidt RYJ., J Neurosci. January 25, 2017; 37 (4): 1039-1054.                  


An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation., Rothe M., Development. January 15, 2017; 144 (2): 321-333.                              


MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus., Vacca B., Biol Open. November 15, 2016; 5 (11): 1631-1641.                          


Autoregulation of retinal homeobox (rax) gene promoter activity through a highly conserved genomic element., Kelly LE., Genesis. November 1, 2016; 54 (11): 562-567.      


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T., Proc Natl Acad Sci U S A. September 6, 2016; 113 (36): 10103-8.                    


Tumor protein Tctp regulates axon development in the embryonic visual system., Roque CG., Development. April 1, 2016; 143 (7): 1134-48.                                  


Noggin 1 overexpression in retinal progenitors affects bipolar cell generation., Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.        


Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa., Bogéa TH., Invest Ophthalmol Vis Sci. December 1, 2015; 56 (13): 7947-55.


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


Rho kinase is required to prevent retinal axons from entering the contralateral optic nerve., Cechmanek PB., Mol Cell Neurosci. November 1, 2015; 69 30-40.  


Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin., Reish NJ., J Neurosci. November 5, 2014; 34 (45): 14854-63.                


Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa., Tam BM., J Neurosci. October 1, 2014; 34 (40): 13336-48.              


Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis., Nemet I., J Neurosci. June 11, 2014; 34 (24): 8164-74.                  


Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye., Atkinson-Leadbeater K., Dev Dyn. May 1, 2014; .              


An unconventional secretory pathway mediates the cilia targeting of peripherin/rds., Tian G., J Neurosci. January 15, 2014; 34 (3): 992-1006.                      


G-protein-coupled receptor cell signaling pathways mediating embryonic chick retinal growth cone collapse induced by lysophosphatidic acid and sphingosine-1-phosphate., Fincher J., Dev Neurosci. January 1, 2014; 36 (6): 443-53.


A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit., Manes G., PLoS One. January 1, 2014; 9 (4): e95768.            


Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion., Moore R., Development. December 1, 2013; 140 (23): 4763-75.                                  


Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1., Smith TS., Cell Mol Life Sci. December 1, 2013; 70 (23): 4603-16.


Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin., Lodowski KH., J Neurosci. August 21, 2013; 33 (34): 13621-38.                      


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation., Nabeshima A., Genesis. June 1, 2013; 51 (6): 410-9.            

???pagination.result.page??? 1 2 3 ???pagination.result.next???