Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (1258) Expression Attributions Wiki
XB-ANAT-736

Papers associated with neural tube

Limit to papers also referencing gene:
Results 1 - 50 of 1258 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

A reinvestigation of some of the tissue movements involved in the formation of the neural tube and the eye/lens system of Triturus alpestris and Xenopus laevis., Lowery RS., J Embryol Exp Morphol. December 1, 1966; 16 (3): 431-8.


Mechanisms of morphogenesis: the embryonic neural tube., Schroeder TE., Int J Neurosci. November 1, 1971; 2 (4): 183-97.


The mechanisms of neural tube formation., Karfunkel P., Int Rev Cytol. January 1, 1974; 38 (0): 245-71.


The distribution of non-synaptic intercellular junctions during neurone differentiation in the developing spinal cord of the clawed toad., Hayes BP., J Embryol Exp Morphol. April 1, 1975; 33 (2): 403-17.


Regeneration of the tail bud in Xenopus embryos., Deuchar EM., J Exp Zool. June 1, 1975; 192 (3): 381-90.


[Proliferative potentials of Xenopus laevis tadpole and toad optic thalamus nerve tissue cells following injury]., Reznikov KIu., Ontogenez. January 1, 1976; 7 (4): 397-401.


[The tail of the tadpole of Alytes obstetricans in organ culture with or without the addition of thyroxine. Ultrastructural controls]., Pouyet JC., C R Seances Soc Biol Fil. January 1, 1976; 170 (5): 942-5.


Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae., Macmillan GJ., J Embryol Exp Morphol. June 1, 1976; 35 (3): 463-84.


The distribution of intercellular gap junctions in the developing retina and pigment epithelium of Xenopus laevis., Hayes BP., Anat Embryol (Berl). December 22, 1976; 150 (1): 99-111.


Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells., Anderson MJ., J Physiol. July 1, 1977; 268 (3): 757-73.


Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells., Anderson MJ., J Physiol. July 1, 1977; 268 (3): 731-56.


Developmental changes in the inward current of the action potential of Rohon-Beard neurones., Baccaglini PI., J Physiol. September 1, 1977; 271 (1): 93-117.


Observations on the formation of the brain and of nerve connections following embryonic manipulation of the amphibian neural tube., Chung SH., Proc R Soc Lond B Biol Sci. June 5, 1978; 201 (1145): 335-73.


Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma., Jacobson M., Science. November 10, 1978; 202 (4368): 637-9.


The mechanism of somite segmentation in the chick embryo., Bellairs R., J Embryol Exp Morphol. June 1, 1979; 51 227-43.


Tissue interactions during axial structure pattern formation in amphibia., Malacinski GM., Scan Electron Microsc. January 1, 1981; (Pt 2): 307-18.


Substrate pathways demonstrated by transplanted Mauthner axons., Katz MJ., J Comp Neurol. February 1, 1981; 195 (4): 627-41.


The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field., Hinkle L., J Physiol. May 1, 1981; 314 121-35.


An ultrastructural examination of early ventral root formation in amphibia., Nordlander RH., J Comp Neurol. July 10, 1981; 199 (4): 535-51.


Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation., Youn BW., J Embryol Exp Morphol. August 1, 1981; 64 23-43.


Morphology and position of growth cones in the developing Xenopus spinal cord., Nordlander RH., Dev Biol. June 1, 1982; 256 (2): 181-93.


Development of the marginal zone in the rhombenecephalon of Xenopus laevis., Kevetter GA., Dev Biol. June 1, 1982; 256 (2): 195-208.


Voltage- and stage-dependent uncoupling of Rohon-Beard neurones during embryonic development of Xenopus tadpoles., Spitzer NC., J Physiol. September 1, 1982; 330 145-62.


Metabolism of acetylcholine receptors on embryonic amphibian muscle., Brehm P., J Neurosci. January 1, 1983; 3 (1): 101-7.


Changes in the ultrastructure of neural tube cells and the notochordal sheath of ultraviolet irradiated Xenopus laevis embryos., Jurand A., Acta Embryol Morphol Exp. May 1, 1983; 4 (1): 3-16.


Neural tube (canal) morphogenesis in notochordless amphibian (Xenopus laevis) embryos., Malacinski GM., Proc Soc Exp Biol Med. December 1, 1983; 174 (3): 316-21.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis., van Mier P., Anat Embryol (Berl). January 1, 1984; 170 (3): 295-306.


Cell lineage analysis of neural induction: origins of cells forming the induced nervous system., Jacobson M., Dev Biol. March 1, 1984; 102 (1): 122-9.


Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures., Kuromi H., Dev Biol. May 1, 1984; 103 (1): 53-61.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Development and subsequent neural tube effects on the excitability of cultured Xenopus myocytes., DeCino P., J Neurosci. June 1, 1985; 5 (6): 1471-82.


Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies., Dale L., J Embryol Exp Morphol. October 1, 1985; 89 289-312.      


A review of the theories of vertebrate neurulation and their relationship to the mechanics of neural tube birth defects., Gordon R., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 229-55.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Inductive interactions in early amphibian development and their general nature., Nieuwkoop PD., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 333-47.


The development of serotonergic raphespinal projections in Xenopus laevis., van Mier P., Int J Dev Neurosci. January 1, 1986; 4 (5): 465-75.


An examination of the evidence for the existence of preformed pathways in the neural tube of Xenopus laevis., Scott TM., J Embryol Exp Morphol. February 1, 1986; 91 181-95.


Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo., Akers RM., Science. February 7, 1986; 231 (4738): 613-6.


The role of glycosaminoglycans in anuran pigment cell migration., Tucker RP., J Embryol Exp Morphol. March 1, 1986; 92 145-64.


Myoblasts and notochord influence the orientation of somitic myoblasts from Xenopus laevis., McCaig CD., J Embryol Exp Morphol. April 1, 1986; 93 121-31.


Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis., Milos NC., J Exp Zool. May 1, 1986; 238 (2): 211-24.


Myoblasts and myoblast-conditioned medium attract the earliest spinal neurites from frog embryos., McCaig CD., J Physiol. June 1, 1986; 375 39-54.


Concanavalin A prevents acetylcholine receptor redistribution in Xenopus nerve-muscle cultures., Kidokoro Y., J Neurosci. July 1, 1986; 6 (7): 1941-51.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Neurites show pathway specificity but lack directional specificity or predetermined lengths in Xenopus embryos., Huang S., J Neurobiol. November 1, 1986; 17 (6): 593-603.


Differentiation of neural crest cells of Xenopus laevis in clonal culture., Akira E., Pigment Cell Res. January 1, 1987; 1 (1): 28-36.


Neural cell adhesion molecule expression in Xenopus embryos., Balak K., Dev Biol. February 1, 1987; 119 (2): 540-50.              


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next