Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (979) Expression Attributions Wiki
XB-ANAT-95

Papers associated with pharyngeal arch (and twist1)

Limit to papers also referencing gene:
Show all pharyngeal arch papers
Results 1 - 50 of 79 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development., Farley-Barnes KI., PLoS Genet. January 1, 2020; 16 (8): e1008967.                                    


Latrophilin2 is involved in neural crest cell migration and placode patterning in Xenopus laevis., Yokote N., Int J Dev Biol. January 1, 2019; 63 (1-2): 29-35.                    


Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A., Front Physiol. January 1, 2019; 10 431.                                          


PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D., Dev Dyn. January 1, 2019; 248 (7): 603-612.            


The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M., Front Physiol. January 1, 2019; 10 817.                    


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. January 1, 2019; 9 (1): 11191.              


Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome., Greenberg RS., Cell. January 1, 2019; 178 (6): 1421-1436.e24.                                


Control of neural crest induction by MarvelD3-mediated attenuation of JNK signalling., Vacca B., Sci Rep. January 1, 2018; 8 (1): 1204.                              


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. January 1, 2018; 149 41-52.                


Serine Threonine Kinase Receptor-Associated Protein Deficiency Impairs Mouse Embryonic Stem Cells Lineage Commitment Through CYP26A1-Mediated Retinoic Acid Homeostasis., Jin L., Stem Cells. January 1, 2018; 36 (9): 1368-1379.                      


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. January 1, 2018; 154 219-239.                      


Vestigial-like 3 is a novel Ets1 interacting partner and regulates trigeminal nerve formation and cranial neural crest migration., Simon E., Biol Open. October 15, 2017; 6 (10): 1528-1540.                                  


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. January 1, 2017; 144 (22): 4183-4194.                                


Controlled levels of canonical Wnt signaling are required for neural crest migration., Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.                          


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development., Schille C., BMC Dev Biol. January 19, 2016; 16 1.                          


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. January 1, 2016; 9 (6): 607-20.                                      


Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest., Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.                      


In vivo confinement promotes collective migration of neural crest cells., Szabó A., J Cell Biol. January 1, 2016; 213 (5): 543-55.                


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN., PLoS Genet. March 1, 2015; 11 (3): e1005018.                              


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation., Uy BR., Dev Biol. January 15, 2015; 397 (2): 282-92.                    


5-Mehtyltetrahydrofolate rescues alcohol-induced neural crest cell migration abnormalities., Shi Y, Shi Y., Mol Brain. September 16, 2014; 7 67.        


Identification of Pax3 and Zic1 targets in the developing neural crest., Bae CJ., Dev Biol. February 15, 2014; 386 (2): 473-83.                  


Protocadherin PAPC is expressed in the CNC and can compensate for the loss of PCNS., Schneider M., Genesis. February 1, 2014; 52 (2): 120-6.        


Expression pattern of zcchc24 during early Xenopus development., Vitorino M., Int J Dev Biol. January 1, 2014; 58 (1): 45-50.                    


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C., Wiley Interdiscip Rev Dev Biol. March 1, 2013; 2 (2): 247-59.      


Expression and functional characterization of Xhmg-at-hook genes in Xenopus laevis., Macrì S., PLoS One. January 1, 2013; 8 (7): e69866.              


The protein kinase MLTK regulates chondrogenesis by inducing the transcription factor Sox6., Suzuki T., Development. August 1, 2012; 139 (16): 2988-98.                        


Mutations in IRX5 impair craniofacial development and germ cell migration via SDF1., Bonnard C., Nat Genet. May 13, 2012; 44 (6): 709-13.    


The LIM adaptor protein LMO4 is an essential regulator of neural crest development., Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.              


Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues., Munoz WA., PLoS One. January 1, 2012; 7 (4): e34342.              


ARVCF depletion cooperates with Tbx1 deficiency in the development of 22q11.2DS-like phenotypes in Xenopus., Tran HT., Dev Dyn. December 1, 2011; 240 (12): 2680-7.                


Kazrin, and its binding partners ARVCF- and delta-catenin, are required for Xenopus laevis craniofacial development., Cho K., Dev Dyn. December 1, 2011; 240 (12): 2601-12.      


Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus., Nie S., Mol Biol Cell. September 1, 2011; 22 (18): 3355-65.                                                


Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis., Bugner V., Development. June 1, 2011; 138 (11): 2369-78.                        


Activity of the RhoU/Wrch1 GTPase is critical for cranial neural crest cell migration., Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.                      


SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos., Wu MY., PLoS Biol. January 1, 2011; 9 (2): e1000593.                              


Xenopus reduced folate carrier regulates neural crest development epigenetically., Li J., PLoS One. January 1, 2011; 6 (11): e27198.                            


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development., Gessert S., Dev Biol. May 1, 2010; 341 (1): 222-35.                                                              


Systematic discovery of nonobvious human disease models through orthologous phenotypes., McGary KL., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6544-9.                                    


CHD7 cooperates with PBAF to control multipotent neural crest formation., Bajpai R., Nature. February 18, 2010; 463 (7283): 958-62.      


Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells., Nie S., Dev Biol. November 1, 2009; 335 (1): 132-42.                        


Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution., Gray RS., Dev Dyn. August 1, 2009; 238 (8): 2044-57.            

Page(s): 1 2 Next