Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(16)
XB-PERS-2264

Publications By Tereza Tlapakova

Results 1 - 16 of 16 results

Page(s): 1


Xenogeneic Sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukin-10 and PD-1 ligands expression., Vegrichtova M, Hajkova M, Porubska B, Vasek D, Krylov V, Tlapakova T, Krulova M., Xenotransplantation. March 16, 2022; e12742.


The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes., Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V., Biol Open. December 20, 2019; 8 (12):                                 


Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V., Stem Cells Int. January 1, 2019; 2019 8387478.                                            


Silurana Chromosomal Evolution: A New Piece to the Puzzle., Knytl M, Tlapakova T, Vankova T, Krylov V., Cytogenet Genome Res. January 1, 2018; 156 (4): 223-228.


Construction and characterization of a BAC library for functional genomics in Xenopus tropicalis., Spirhanzlova P, Dhorne-Pollet S, Fellah JS, Da Silva C, Tlapakova T, Labadie K, Weissenbach J, Poulain J, Jaffredo T, Wincker P, Krylov V, Pollet N., Dev Biol. June 15, 2017; 426 (2): 255-260.          


Xenopus Cytogenetics and Chromosomal Evolution., Krylov V, Tlapakova T., Cytogenet Genome Res. October 12, 2016; .


Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages., Tlapakova T, Nguyen TM, Vegrichtova M, Sidova M, Strnadova K, Blahova M, Krylov V., Biol Open. September 15, 2016; 5 (9): 1275-82.          


Efficient high-throughput sequencing of a laser microdissected chromosome arm., Seifertova E, Zimmerman LB, Gilchrist MJ, Macha J, Kubickova S, Cernohorska H, Zarsky V, Owens ND, Sesay AK, Tlapakova T, Krylov V., BMC Genomics. May 28, 2013; 14 357.        


A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis., Bewick AJ, Chain FJ, Zimmerman LB, Sesay A, Gilchrist MJ, Owens ND, Seifertova E, Krylov V, Macha J, Tlapakova T, Kubickova S, Cernohorska H, Zarsky V, Evans BJ., Genome Biol Evol. January 1, 2013; 5 (6): 1087-98.      


Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7''s historical relationship with the MHC., Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y., Immunogenetics. August 1, 2012; 64 (8): 571-90.


A genetic map of Xenopus tropicalis., Wells DE, Gutierrez L, Xu Z, Krylov V, Macha J, Blankenburg KP, Hitchens M, Bellot LJ, Spivey M, Stemple DL, Kowis A, Ye Y, Pasternak S, Owen J, Tran T, Slavikova R, Tumova L, Tlapakova T, Seifertova E, Scherer SE, Sater AK., Dev Biol. June 1, 2011; 354 (1): 1-8.  


Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH., Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, Sebkova N., Chromosome Res. June 1, 2010; 18 (4): 431-9.


Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes., Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CY, Kaufman S, Lam DK, Macha J, Ngo C, Prakash N, Schmidt P, Tlapakova T, Trivedi T, Tumova L, Abu-Daya A, Geach T, Vendrell E, Ironfield H, Sinzelle L, Sater AK, Wells DE, Harland RM, Zimmerman LB., Dev Dyn. June 1, 2009; 238 (6): 1398-46.          


Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA., Krylov V, Tlapakova T, Macha J., Cytogenet Genome Res. January 1, 2007; 116 (1-2): 110-2.


Localization, structure and polymorphism of two paralogous Xenopus laevis mitochondrial malate dehydrogenase genes., Tlapakova T, Krylov V, Macha J., Chromosome Res. January 1, 2005; 13 (7): 699-706.


The c-SRC1 gene visualized by in situ hybridization on Xenopus laevis chromosomes., Krylov V, Mácha J, Tlapáková T, Takác M, Jonák J., Cytogenet Genome Res. January 1, 2003; 103 (1-2): 169-72.

Page(s): 1