Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(91)
XB-PERS-655

Publications By Jacques Robert

Results 1 - 50 of 91 results

Page(s): 1 2 Next


Erratum: Assessing Antibody Responses to Pathogens or Model Antigens in Xenopus by Enzyme-Linked Immunosorbent Assay (ELISA)., Andino FJ, Robert J., Cold Spring Harb Protoc. June 1, 2021; 2021 (6): pdb.err107715.


Developing Tadpole Xenopus laevis as a Comparative Animal Model to Study Mycobacterium abscessus Pathogenicity., Lopez A, Shoen C, Cynamon M, Dimitrakopoulou D, Paiola M, Pavelka MS, Robert J., Int J Mol Sci. January 15, 2021; 22 (2):                     


Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles., McGuire CC, Lawrence BP, Robert J., Toxicol Sci. January 1, 2021; 181 (2): 262-272.


TLR5-Mediated Reactivation of Quiescent Ranavirus FV3 in Xenopus Peritoneal Macrophages., Samanta M, Yim J, De Jesús Andino F, Paiola M, Robert J., J Virol. January 1, 2021; 95 (12):


Targeted Transcriptomics of Frog Virus 3 in Infected Frog Tissues Reveal Non-Coding Regulatory Elements and microRNAs in the Ranaviral Genome and Their Potential Interaction with Host Immune Response., Tian Y, Khwatenge CN, Li J, De Jesus Andino F, Robert J, Sang Y., Front Immunol. January 1, 2021; 12 705253.


Virus-Targeted Transcriptomic Analyses Implicate Ranaviral Interaction with Host Interferon Response in Frog Virus 3-Infected Frog Tissues., Tian Y, De Jesús Andino F, Khwatenge CN, Li J, Robert J, Sang Y., Viruses. January 1, 2021; 13 (7):


The Immune System and the Antiviral Responses in Chinese Giant Salamander, Andrias davidianus., Jiang N, Fan Y, Zhou Y, Meng Y, Liu W, Li Y, Xue M, Robert J, Zeng L., Front Immunol. January 1, 2021; 12 718627.


The myeloid lineage is required for the emergence of a regeneration-permissive environment following Xenopus tail amputation., Aztekin C, Hiscock TW, Butler R, De Jesús Andino F, Robert J, Gurdon JB, Jullien J., Development. January 1, 2020; 147 (3):                                     


Experimental Platform Using the Amphibian Xenopus laevis for Research in Fundamental and Medical Immunology., Robert J., Cold Spring Harb Protoc. January 1, 2020; 2020 (7): 106625.


Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer., Banach M, Robert J., Immunol Invest. October 1, 2019; 48 (7): 737-758.


Developmental exposure to chemicals associated with unconventional oil and gas extraction alters immune homeostasis and viral immunity of the amphibian Xenopus., Robert J, McGuire CC, Nagel S, Lawrence BP, Andino FJ., Sci Total Environ. June 25, 2019; 671 644-654.


Adoptive Transfer of Fluorescently Labeled Immune Cells in Xenopus., Rhoo KH, Robert J., Cold Spring Harb Protoc. January 1, 2019; 2019 (5):


Assessing Antibody Responses to Pathogens or Model Antigens in Xenopus by Enzyme-Linked Immunosorbent Assay (ELISA)., De Jesús Andino F, Robert J., Cold Spring Harb Protoc. January 1, 2019; 2019 (5):


Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus., Rollins-Smith LA, Robert J., Cold Spring Harb Protoc. January 1, 2019; 2019 (1):


A Xenopus tadpole alternative model to study innate-like T cell-mediated anti-mycobacterial immunity., Hyoe RK, Robert J., Dev Comp Immunol. January 1, 2019; 92 253-259.


Critical Role of an MHC Class I-Like/Innate-Like T Cell Immune Surveillance System in Host Defense against Ranavirus (Frog Virus 3) Infection., Edholm EI, De Jesús Andino F, Yim J, Woo K, Robert J., Viruses. January 1, 2019; 11 (4):                 


Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support., Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, null null, Robert J, James-Zorn C, Guille M., Front Physiol. January 1, 2019; 10 387.        


Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus., Banach M, Edholm ES, Gonzalez X, Benraiss A, Robert J., Carcinogenesis. January 1, 2019; 40 (7): 924-935.


Distinct Host-Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis., Rhoo KH, Edholm ES, Forzán MJ, Khan A, Waddle AW, Pavelka MS, Robert J., J Immunol. January 1, 2019; 203 (10): 2679-2688.                  


Isl1 Regulation of Nkx2.1 in the Early Foregut Epithelium Is Required for Trachea-Esophageal Separation and Lung Lobation., Kim E, Jiang M, Huang H, Zhang Y, Tjota N, Gao X, Robert J, Gilmore N, Gan L, Que J., Dev Cell. January 1, 2019; 51 (6): 675-683.e4.          


RNAi-Mediated Loss of Function of Xenopus Immune Genes by Transgenesis., Edholm ES, Robert J., Cold Spring Harb Protoc. January 1, 2018; 2018 (7):


Frog''s DCs have it all in one., Robert J., Eur J Immunol. January 1, 2018; 48 (3): 415-418.


Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus., Edholm ES, Banach M, Hyoe Rhoo K, Pavelka MS, Robert J., Proc Natl Acad Sci U S A. January 1, 2018; 115 (17): E4023-E4031.          


Water Contaminants Associated With Unconventional Oil and Gas Extraction Cause Immunotoxicity to Amphibian Tadpoles., Robert J, McGuire CC, Kim F, Nagel SC, Price SJ, Lawrence BP, De Jesús Andino F., Toxicol Sci. January 1, 2018; 166 (1): 39-50.


Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin., Robert J, Edholm ES, De Jesus Andino F., Methods Mol Biol. January 1, 2018; 1865 265-273.


Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions., Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI., Front Immunol. January 1, 2018; 9 2536.    


Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system., Banach M, Edholm ES, Robert J., Dev Biol. January 1, 2017; 426 (2): 261-269.          


Xenopus-FV3 host-pathogen interactions and immune evasion., Jacques R, Edholm ES, Jazz S, Odalys TL, Francisco JA., Virology. January 1, 2017; 511 309-319.


Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. January 1, 2016; 538 (7625): 336-343.                              


Evolution of nonclassical MHC-dependent invariant T cells., Edholm ES, Grayfer L, Robert J., Cell Mol Life Sci. December 1, 2014; 71 (24): 4763-80.


Improved knockout methodology reveals that frog virus 3 mutants lacking either the 18K immediate-early gene or the truncated vIF-2alpha gene are defective for replication and growth in vivo., Chen G, Ward BM, Yu KH, Chinchar VG, Robert J., J Virol. November 1, 2011; 85 (21): 11131-8.


Antiviral immunity in amphibians., Chen G, Robert J., Viruses. November 1, 2011; 3 (11): 2065-86.        


The genus Xenopus as a multispecies model for evolutionary and comparative immunobiology of the 21st century., Robert J, Cohen N., Dev Comp Immunol. September 1, 2011; 35 (9): 916-23.


Waterborne infectivity of the Ranavirus frog virus 3 in Xenopus laevis., Robert J, George E, De Jesús Andino F, Chen G., Virology. September 1, 2011; 417 (2): 410-7.


Phylogenetic and developmental study of CD4, CD8 α and β T cell co-receptor homologs in two amphibian species, Xenopus tropicalis and Xenopus laevis., Chida AS, Goyos A, Robert J., Dev Comp Immunol. March 1, 2011; 35 (3): 366-77.


Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species., Goyos A, Sowa J, Ohta Y, Robert J., J Immunol. January 1, 2011; 186 (1): 372-81.


Comparative in vivo study of gp96 adjuvanticity in the frog Xenopus laevis., Nedelkovska H, Cruz-Luna T, McPherson P, Robert J., J Vis Exp. September 16, 2010; (43):


Innate immune responses and permissiveness to ranavirus infection of peritoneal leukocytes in the frog Xenopus laevis., Morales HD, Abramowitz L, Gertz J, Sowa J, Vogel A, Robert J., J Virol. May 1, 2010; 84 (10): 4912-22.


The genome of the Western clawed frog Xenopus tropicalis., Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS., Science. April 30, 2010; 328 (5978): 633-6.


The amphibians Xenopus laevis and Silurana tropicalis possess a family of activating KIR-related Immunoglobulin-like receptors., Guselnikov SV, Reshetnikova ES, Najakshin AM, Mechetina LV, Robert J, Taranin AV., Dev Comp Immunol. March 1, 2010; 34 (3): 308-15.


Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis., Ribas L, Li MS, Doddington BJ, Robert J, Seidel JA, Kroll JS, Zimmerman LB, Grassly NC, Garner TW, Fisher MC., PLoS One. December 22, 2009; 4 (12): e8408.      


Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance., Robert J, Goyos A, Nedelkovska H., Immunol Res. December 1, 2009; 45 (2-3): 114-22.


Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus., Rosenblum EB, Poorten TJ, Settles M, Murdoch GK, Robert J, Maddox N, Eisen MB., PLoS One. August 4, 2009; 4 (8): e6494.    


Comparative and developmental study of the immune system in Xenopus., Robert J, Ohta Y., Dev Dyn. June 1, 2009; 238 (6): 1249-70.      


Novel nonclassical MHC class Ib genes associated with CD8 T cell development and thymic tumors., Goyos A, Ohta Y, Guselnikov S, Robert J., Mol Immunol. May 1, 2009; 46 (8-9): 1775-86.


Tumorigenesis and anti-tumor immune responses in Xenopus., Goyos A, Robert J., Front Biosci (Landmark Ed). January 1, 2009; 14 (1): 167-76.


Diversity of the FcR- and KIR-related genes in an amphibian Xenopus., Guselnikov SV, Ramanayake T, Robert J, Taranin AV., Front Biosci (Landmark Ed). January 1, 2009; 14 (1): 130-40.


Phylogenetic conservation of glycoprotein 96 ability to interact with CD91 and facilitate antigen cross-presentation., Robert J, Ramanayake T, Maniero GD, Morales H, Chida AS., J Immunol. March 1, 2008; 180 (5): 3176-82.


The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution., Guselnikov SV, Ramanayake T, Erilova AY, Mechetina LV, Najakshin AM, Robert J, Taranin AV., BMC Evol Biol. February 8, 2008; 8 148.                


In vivo and in vitro techniques for comparative study of antiviral T-cell responses in the amphibian Xenopus., Morales H, Robert J., Biol Proced Online. January 17, 2008; 10 1-8.      

Page(s): 1 2 Next